下沙中心区单元 JS0402-46 地块 土壤污染状况初步调查报告

委托单位: 杭州市规划和自然资源局钱塘新区分局

编制单位: 浙江同浙环保科技有限公司

2020年11月

责任表

项目名称:下沙中心区单元 JS0402-46 地块土壤污染状况

初步调查报告

委托单位: 杭州市规划和自然资源局钱塘新区分局

编制单位: 浙江同浙环保科技有限公司

检测单位: 杭州天量检测科技有限公司

姓 名	分 工	签名
李 君	项目负责	
杨宇晴	编制人员	
王燕芳	审 核	

目 录

1	前言	1
	1.1 地块基本情况概述 1.2 项目背景 1.3 调查报告提出者、调查执行者、撰写者	1 1
2	概述	3
	2.1 调查目的和原则	3
	2.2 调查范围	3
	2.3 调查依据	
	2.4 调查方法2.5 调查执行说明及调查结果简述	
	2.6 采样方案专家咨询及落实情况	
3	地块概况	
U		
	3.1 区域自然环境状况	
	3.3 地块历史变迁情况	
	3.4 地块使用现状	33
	3.5 地块利用的规划	
	3.6 地块原有污染情况调查 3.7 第一阶段土壤污染状况调查总结	
4		
4	工作计划	
	4.1 初步采样分析工作计划	
	4.2 采样方案4.3 分析检测方案	
_		
5	现场采样和实验室分析	
	5.1 现场探测方法和程序	
	5.2 采样方法和程序 5.3 实验室分析	
	5.4 质量保证和质量控制	
6	结果和评价	76
	6.1 地块的地质和水文地质条件	76
	6.2 评价标准	
	6.3 分析检测结果	
	6.4 质控结果分析	
	6.5 结果分析和评价	
7	结论和建议	119

下沙中心区单元 JS0402-46 地块土壤污染状况初步调查报告

	7.2 3	结论 建议 不确定性分析	119
8			
	8.1 F	现场采样等照片	121
	8.2 J	原始记录	131
		检测单位资质证书及检测项目资质	
	8.4 柞	检测报告	202
	8.5 万	质控报告	228
	8.6	人员访谈记录	299
	8.7 ±	场地初步调查方案专家函审意见	. 302
	8.8 À	初步调查方案函审意见修改说明	. 305
	8.9 ±	场地初步调查报告评审意见及修改说明	307
	8. 10	浙江省建设用地土壤污染状况调查报告技术审查表	309
	8.11	场地初步调查报告复核意见	314

1 前言

1.1 地块基本情况概述

下沙中心区单元 JS0402-46 地块位于中心区单元的北部,东临规划支路七,南至金沙渠沿河绿化,西至松合路,北接学林街,地块占地面积为 31515m²,现由杭州市规划和自然资源局钱塘新区分局收储。

根据历史资料收集、人员访谈和现场探勘了解,该地块历史上为农业用地, 未有相关的工业项目、仓储项目建设和生产。

目前地块内部为空地,有蔬菜种植,存在杂草和林地,无生活垃圾及建筑垃圾堆放,无外来覆土及填土。根据杭州市规划和自然资源局核发的下沙中心区单元 JS0402-46 地块所在区域规划图,该调查地块拟做居住用地使用。

1.2 项目背景

根据《中华人民共和国土壤污染防治法》(2018 年 8 月 31 日第十三届全国人民代表大会常务委员会第五次会议通过,2019 年 1 月 1 日施行)第五十九条第二款要求,用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。

下沙中心区单元 JS0402-46 地块原用途为农用地,本次规划调整为居住用地,用途进行了变更,因此,本地块需开展场地环境初步调查工作。

1.3 调查报告提出者、调查执行者、撰写者

调查报告提出者: 杭州市规划和自然资源局钱塘新区分局

调查执行者、撰写者:浙江同浙环保科技有限公司

检测单位: 杭州天量检测科技有限公司

杭州市规划和自然资源局钱塘新区分局委托浙江同浙环保科技有限公司对下沙中心区单元 JS0402-46 地块进行土壤环境初步调查,以判断该地块是否存在污染。

根据国家场地环境调查相关技术规范的要求,在接到委托后,2020年7月 我单位组织专业技术人员开展了场地资料收集、现场踏勘和人员访谈为主的污染物识别,即第一阶段场地环境调查。根据污染识别结果,确定地块内并不存在明显的工业污染源,但无法确保地块未受农业源等其他污染,因此确定目标地块需要地块进行第二阶段地块环境调查。随即在核查已有信息的基础上,我 公司编制完成《下沙中心区单元 JS0402-46 地块土壤污染状况初步调查方案》并于 8 月 21 日邀请专家进行函审,函审通过后根据专家意见对方案进行了修改完善,随即委托杭州天量检测科技有限公司(有资质的检测单位)进行土壤和地下水样品采集、实验室分析。我公司根据检测结果进行数据处理分析,并对照筛选值进行评价,在此基础上编制完成了《下沙中心区单元 JS0402-46 地块土壤污染状况初步调查报告》。

2 概述

2.1 调查目的和原则

2.1.1 调查目的

通过对地块历史使用情况进行调查,结合现场踏勘及人员访谈,初步判定地 块内疑似污染区域。通过对地块内土壤和地下水采样及实验室检测分析,根据检 测分析结果,以判断该地块是否存在重金属、挥发性有机物或半挥发性有机物等 污染,明确地块是否需要开展详细调查及风险评估,为地块后续开发利用管理提 供依据。

本次调查介质为场地内及周边土壤、地下水。

2.1.2 调查原则

根据污染场地调查工作内容和场地的实际情况,本次场地调查遵循以下基本原则:

(1) 针对性原则

根据卫星影像图以及实地调查,对调查范围进行框定并进行采样调查,并根据现场专业判断对疑似污染区域进行调查。

(2) 规范性原则

采用程序化和系统化的方式开展场地环境调查工作,保证调查过程的科学性和客观性。本次调查将按照环保部《建设项目土壤污染状况调查技术导则》(HJ25.1-2019)的要求进行。

(3) 可操作性原则

综合考虑调查评估方法、时间和经费等因素,结合现阶段场地实际情况,使调查评估过程切实可行。

2.2 调查范围

本次地块初步调查范围为下沙中心区单元 JS0402-46 地块,总地块面积为 31515m²,地块位于中心区单元的北部,东临规划支路七,南至金沙渠沿河绿化, 西至松合路,北接学林街,本地调查场地边界范围图见图 2.2-1,拐点坐标详见表 2.2-1。

拐点序号	经度	纬度
1	120° 18' 36.166" E	30° 18′ 54.149″ N
2	120° 18' 31.266" E	30° 18' 54.313" N
3	120° 18' 31.230" E	30° 18' 56.665" N
4	120° 18' 31.232" E	30° 18' 58.513" N
5	120° 18' 31.218" E	30° 19' 0.490" N
6	120° 18' 31.637" E	30° 19' 0.901" N
7	120° 18' 37.213" E	30° 19' 0.939" N
8	120° 18' 37.276" E	30° 19' 0.210" N
9	120° 18' 37.227" E	30° 18' 59.352" N
10	120° 18' 37.250" E	30° 18' 55.953" N
11	120° 18' 37.363" E	30° 18' 55.401" N
12	120° 18' 37.085" E	30° 18' 55.164" N

表 2.2-1 地块拐点坐标一览表

图 2.2-1 场地边界范围图

2.3 调查依据

2.3.1 法律法规

- (1) 《中华人民共和国环境保护法》,2014年4月24日修订,2015年1月1日施行;
 - (2) 《中华人民共和国土壤污染防治法》,2018年8月31日发布,2019

年1月1日施行;

- (3)《中华人民共和国水污染防治法》,2017年6月27日修订,2018年1月1日施行:
 - (4)《中华人民共和国大气污染防治法》,2018年10月26日修订并实施;
- (5)《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订,2020年9月1日施行;
 - (6)《国务院关于印发土壤污染防治行动计划的通知》(国发[2016]31号);
- (7)《国务院办公厅关于印发近期土壤环境保护和综合治理工作安排的通知》(国办发[2013]7号);
- (8)《关于印发浙江省土壤污染防治工作方案的通知》(浙政发[2016]47号);
- (9)《浙江省人民政府关于印发浙江省土壤污染防治工作方案的通知》(浙政发〔2016〕47号):
- (10)《杭州市人民政府关于印发杭州市土壤污染防治工作方案的通知》(杭政函〔2017〕87号);
- (11) 《杭州市净土行动暨土壤污染案防治工作方案的通知》(2018-2020 年):
- (12) 《杭州市人民政府关于印发杭州市加快生态文明示范创建深化"美丽杭州"建设行动方案的通知》(杭政函〔2019〕18号)。

2.3.2 技术标准及规范

- (1)《建设用地土壤污染状况调查技术导则》(HJ25.1-2019);
- (2)《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019);
- (3)《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019);
- (4)《建设用地土壤环境调查评估技术指南》(环境保护部,2017年12月14日):
- (5)《工业企业场地环境调查评估与修复工作指南(试行)》(环境保护部,2014年11月);
- (6)《浙江省生态环境厅关于印发建设用地土壤污染状况调查报告、风险评估报告和修复效果评估报告技术审查表的函》(浙江省生态环境厅,2019年6月17日);

- (7)《土壤环境质量建设用地土壤污染风险管控标准》(试行)(GB36600-2018);
 - (8) 《地下水质量标准》(GB/T14848-2017);
 - (9) 《地表水环境质量标准》(GB3838-2002);
 - (10) 《土壤环境监测技术规范》(HJ/T166-2004);
 - (11) 《地下水环境监测技术规范》(HJ/T164-2004);
 - (12) 《水质采样 样品的保存和管理技术规定》(HJ 493-2009)
 - (13) 《地下水污染地质调查评价规范》(DD2008-01);
 - (14) 《水文地质钻探规程》(DZ/T0148-1994);
 - (15) 《原状土取样技术标准》(JBJ89-92);
 - (16) 《岩土工程勘察规范》(GB50021-2001)。
- (17)《上海市建设用地地下水污染风险管控筛选值补充指标》(沪环土 (2020) 62 号)。

2.3.4 其他技术资料

- (1)《杭州经济技术开发区集镇供销社拆迁安置房工程岩土工程勘察报告》 (2012年12月,杭州市勘测设计研究院);
 - (2) 业主提供的其他资料。

2.4 调查方法

本次场地调查主要包括第一阶段场地环境调查(污染识别)和第二阶段场地环境调查的初步采样分析部分。其中,第一阶段场地环境调查(污染识别)的调查方法有资料收集与分析、现场踏勘、人员访谈;第二阶段场地环境调查的初步采样分析是先根据污染识别制定初步调查采样方案,再进行现场采样和实验室样品检测,最后根据检测结果对场地污染情况进行分析。初步调查技术路线如下图所示。

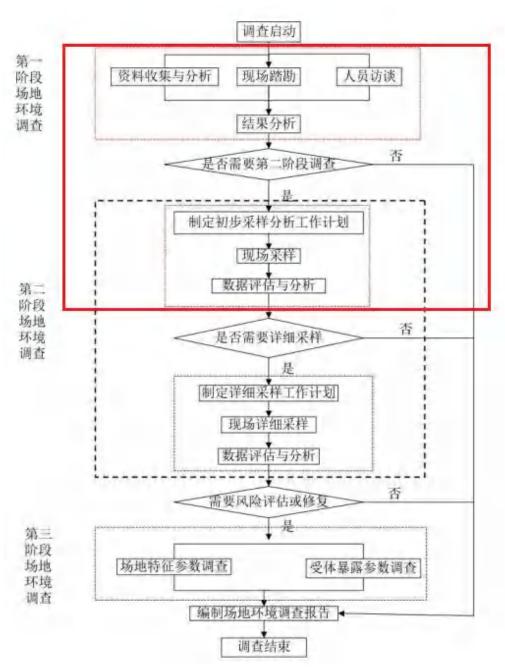


图2.4-1 场地环境初步调查技术路线图(红框内部分)

2.5 调查执行说明及调查结果简述

2.5.1 调查执行说明

土壤状况调查前,首先收集各类资料,对调查范围进行确认。现场踏勘初步了解地块内现状及历史情况,确定地块内疑似污染区域,结合地块历史平面布局及疑似污染区域所在位置,编制初步调查方案。

出具调查监测方案后,委托有资质的检测单位开展土壤和地下水现状监测,监测过程中,要求检测单位从监测点位定点、采样、样品保存、流转、运输、监测、记录等开展全过程质控,全过程中需对重点工作内容现场拍照,做好现场记录,最终监测完成后,出具监测报告及质控报告。

调查报告编制单位在收到监测报告和质控报告后,结合前期调查内容,开展资料整理、监测数据分析,并编制完成调查报告。

2.5.2 调查结果简述

本地块场地环境调查严格按照国家技术规范和相关导则开展。根据场地环境调查结果,场地内土壤质量满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第一类用地的筛选值要求;场地地下水质量满足《地下水质量标准》(GB/T14848-2017)IV类标准、《地表水环境质量标准》(GB3838-2002)IV类标准要求及《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值要求。

因此,可以认为调查地块无需进行下一阶段场地环境详细调查和风险评估工作,可作为规划的居住用地进行开发利用。

2.6 采样方案专家咨询及落实情况

在对地块进行初步调查的基础上,我公司编制了《下沙中心区单元 JS0402-46 地块土壤污染状况初步调查方案》,方案编制完成后,于 2020 年 8 月 21 日邀请三位专家进行函审,3 位专家分别出具了方案函审意见,详见附件 8.7。

函审意见要求充实细化地块资料收集、地块现状、人员访谈相关内容;完善 采样点位布设和特征污染因子确定;补充完善编制依据;补充土壤样品送检原则 等。我单位根据函审意见对方案进行了修改,在方案中充实细化了地块资料收集、 地块现状、人员访谈、土壤样品送检原则等相关内容,完善了采样点位布设、特 征污染因子确定、编制依据等,形成了最终的《下沙中心区单元 JS0402-46 地块 土壤污染状况初步调查方案》,交由有资质的检测单位开展监测工作。具体函审意见修改说明详见附件 8.8。

3 地块概况

3.1 区域自然环境状况

3.1.1 地理位置

杭州下沙经济技术开发区是 1993 年 4 月经国务院批准设立的国家级开发区,位于浙江省杭州市东部,钱塘江北岸。距市中心仅 18 公里,是杭州市的三大副城之一,面积 104.7 平方公里,建成区 47 平方公里,辖区人口 50 万。是杭州市乃至浙江省发展现代化制造业、外向型经济和高教科研的重要基地。地理坐标为东东经 120°21'33",北纬 30°16'43"。

下沙中心区单元 JS0402-46 地块位于中心区单元的北部, 东临规划支路七, 南至金沙渠沿河绿化, 西至松合路, 北接学林街。地理位置图见图 3.1-1。

图 3.1-1 地理位置图

3.1.2 地形地貌

杭州地处长江三角洲南翼,杭州湾西端,钱塘江下游,京杭大运河南端,是长江三角洲重要中心城市和中国东南部交通枢纽。杭州西北部和西南部系浙西中山丘陵区;东北部和东南部属浙北平原,河网密布,是著名的鱼米之乡的一部分,全市丘陵山地占总面积的65.6%,平原占26.4%,江、河、湖、荡、水库占8.0%。

杭州市区地势西高东低,地形由西南向东北倾斜,地面高程在黄海高程8.27~9.94m之间,地下水位于地下-1.4~3.1m间。

开发区系钱塘江和海潮流携带地泥沙堆积而成,为河口海积平原。据勘探资料表明,该地区广泛沉积了约70~80mm 厚的以灰色调为主的砂与粘性第四纪松散层,地表以下5.0~14.0m 范围内为粉砂,粉细砂,地耐力为10~12t/m²。该地区大地构造单元完整,新构造运动不明显。地壳较稳定,地震基本烈度为VI度。

3.1.3 水文特征

杭州经济技术开发区地表水主要是钱塘江。杭州经济技术开发区所处的钱塘江下沙段属于径流和潮流共同作用的河口段。根据《浙江省水功能区水环境功能区划分方案(2015)》,确定纳污水体为钱塘191,所属水功能区为钱塘江杭州景观娱乐、渔业用水区,水环境功能区为景观娱乐、渔业用水区,现状水质和目标水质均为III类水质。

钱塘江多年平均径流总量为 267 亿 m^3 ,径流年际变化较大,最大年径流为 425 亿 m^3 ,最小年径流量为 101 亿 m^3 。

钱塘江潮流为往复潮流。据七堡断面观察结果,涨潮最大流速为 4.11m/s,平均为 0.65m/s,落潮最大流速为 1.94m/s,平均为 0.53m/s。钱塘江年平均低潮位为 2.57m,年平均高潮位为 4.12m。地下水主要为第四孔隙潜水、孔隙承压水及基岩裂隙水,但水量贫乏,无供水意义,地下水位随区内河道的水位而升降,水位标高约为 2.6m(黄海高程)。

3.1.4 地层构成

本场地引用地块西侧约17m处的《杭州经济技术开发区集镇供销社拆迁安置房工程岩土工程勘察报告》(杭州市勘测设计研究院),项目钻探最大深度为66.7m,根据勘察揭示的地层,结合岩性特征、埋藏条件及物理力学性质等因素,将钻探揭露岩土层划分为9个工程地质层,细分为23个亚层,自上而下分述如下:

1、第四纪覆盖层

- ①₁: 层耕土: 灰黄色,湿,松散,含少量砖瓦、碎砾石,含大量植物根系。 呈粉土性。层厚0.50~0.90m,场地部分分布。
- ①₂层杂填土: 黄灰色,湿,松散,含较多块石、砖块及砼块等建筑垃圾,块径分布不等,最大超过30cm。以粘质粉土充填。层厚0.40~2.20m,场地部分分

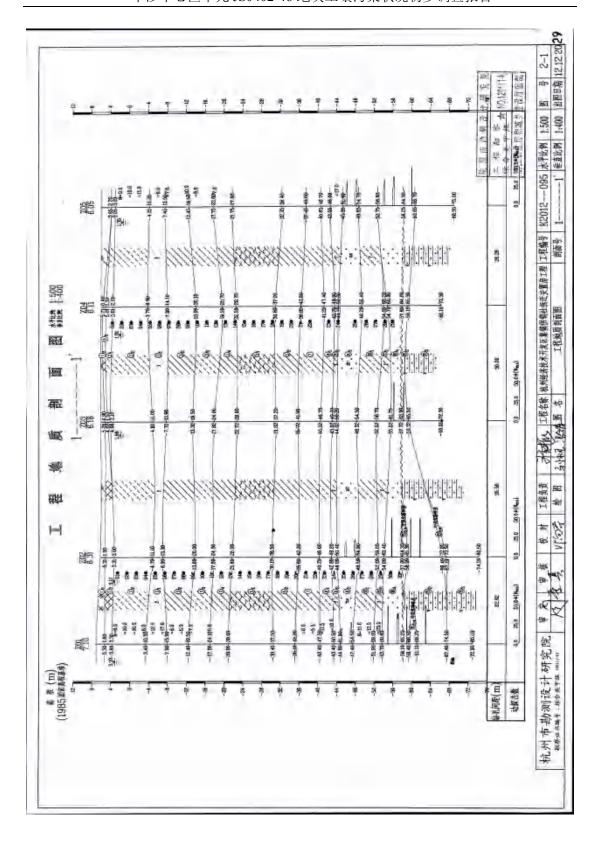
布。

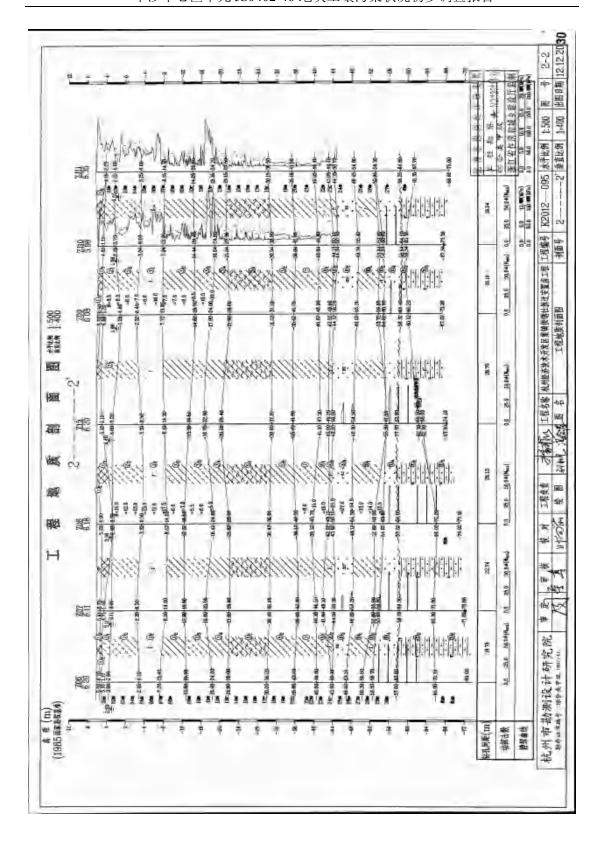
- ①₃层素填土:灰色,湿,松散,含氧化铁,少量砖瓦碎屑、植物根茎,粘质粉土性。层厚0.40~4.70m,场地大部分布。
- ②₁层砂质粉土: 黄灰色,饱和,稍密,含云母屑,摇震反应迅速,切面粗糙,干强度低,韧性低。层厚0.60~3.60m,场地大部分布。
- ②2层砂质粉土: 黄灰色,饱和,稍密,含云母屑,摇震反应迅速,切面粗糙,干强度低,韧性低。层厚3.60~10.80m,全场分布。
- ③1层粉砂:灰色、黄灰色,饱和,稍密~中密,含云母,偶见少量贝壳屑。 局部呈砂质粉土状。层厚1.30~6.00m,场地大部分布。
- ③2层砂质粉土夹粘性土:灰色,饱和,稍密,含云母屑,摇震反应迅速,切面粗糙,干强度低,韧性低。层厚3.30~11.30m,全场分布。
- ③₃层砂质粉土: 青灰色,饱和,稍密,含云母屑,摇震反应迅速,切面粗糙,干强度低,韧性低。层厚1.00~6.10m,场地大部分布。
- ③4层粘质粉土夹粘性土:灰色,饱和,稍密,含云母屑,夹单层厚1~3cm软塑~流塑状粘性土薄层,摇振反应中等,切面较粗糙,干强度低,韧性低。层厚1.10~6.20m,场地大部分布。
- ⑤1层淤泥质粉质粘土夹粉土:灰色,流塑,含有机质、腐殖物,夹单层厚0.1~0.3cm粉土薄层,灵敏度高,压缩性高,无摇振反应,切面较光滑,干强度中等,韧性中等。层厚6.00~13.50m,全场分布。
- ⑤₂层(淤泥质)粘土:灰色,软塑(流塑),含有机质、腐殖物,无摇振反应,切面光滑,干强度中等,韧性中等,局部呈淤泥,性质较差。层厚2.00~10.10m,全场分布。
- ⑦层灰色粉质粘土:褐灰色,软塑,含氧化铁,有机质及植物残体,无摇振反应,切面较光滑,干强度高,韧性中等。层厚2.00~7.10m,全场分布。
- ⑧₁层粉质粘土: 青灰色、灰绿色, 硬可塑, 无摇振反应, 切面较光滑, 干强度高, 韧性中等。层厚0.80~5.80m, 场地大部分布。
- ⑧₂层含砂粉质粘土:绿灰色,软塑~可塑,含氧化铁,无摇振反应,切面较粗糙,干强度中等,韧性中等。层厚0.40~2.80m,场地大部分布。
- ⑧₃层含砾中粗砂:浅黄灰色,饱和,中密,含砾约5%~10%,局部夹细砂。 层厚2.60~6.10m,全场分布。

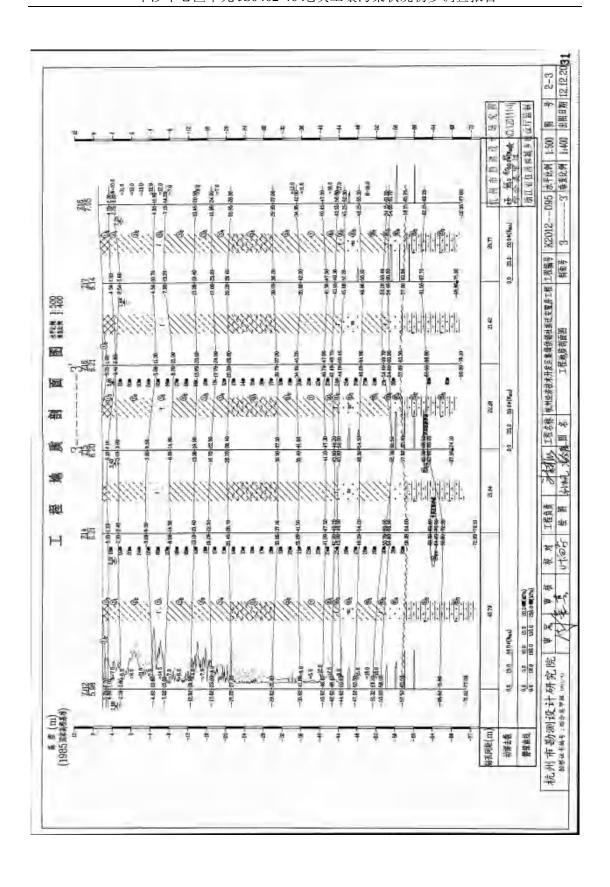
- ⑩₁层粉质粘土:浅青灰色,可塑,含氧化铁,无摇振反应,切面较光滑, 干强度高,韧性中等。层厚2.80~7.10m,全场分布。
- ⑩2层含砂粉质粘土: 青灰色, 软塑, 含氧化铁, 无摇振反应, 切面较光滑, 干强度高, 韧性中等。层厚0.50~3.00m, 场地部分分布。
- ⑩4层圆砾: 黄灰、灰色,饱和,中密~密实,卵砾石含量约60%,直径一般为0.5~2cm,最大为4cm,亚圆形为主,砾石成分以凝灰岩、石英砂岩、砂岩为主,其余多为中、粗砾砂充填,未胶结。钻进时钻杆跳动剧烈,干钻较难钻进。层厚1.50~6.00m,全场分布。
- ⑩_{4束}层含砂粉质粘土:青灰色,软塑,含氧化铁,无摇振反应,切面较光滑, 干强度中等~高,韧性中等。层厚0.6m,仅揭露于Z51号孔。

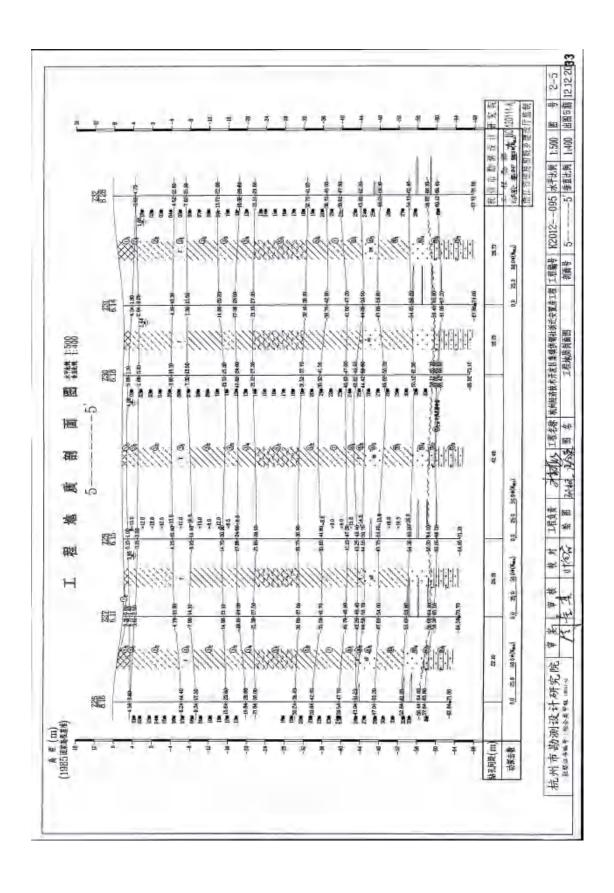
2、基岩

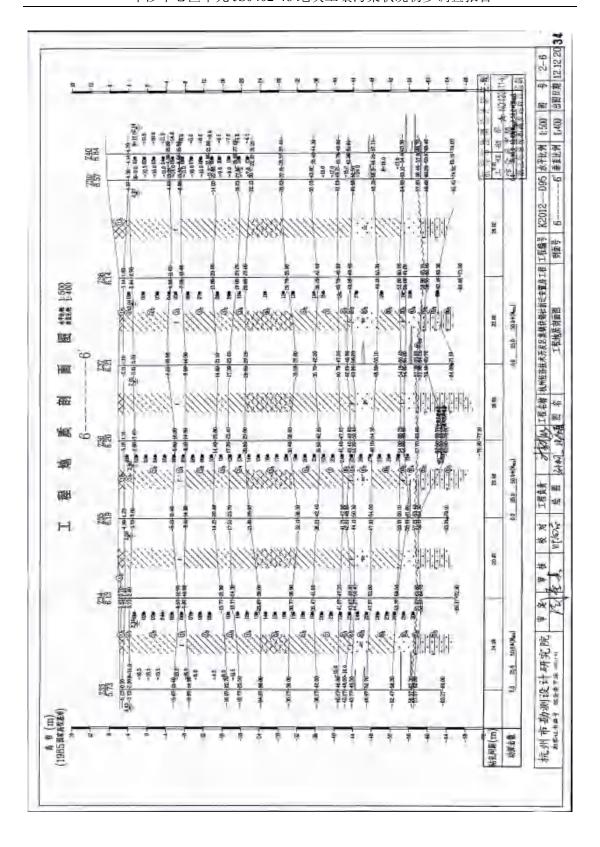
- (15)₂强风化砂砾岩:紫红色,母岩成分与结构已大部破坏,岩芯呈短柱状,裂隙发育,结构模糊,手可捏碎,指甲易挖动,干钻易钻进,锤击很易击碎,钻进时钻机平稳,采用直径为127mm合金钻头钻进速度约10~15分钟/米左右。层厚0.50~8.30m,主要分布于场地北侧区域。
- (15)₃中等风化砂砾岩:紫红色,母岩成分与结构部分遭破坏,岩石具砾状结构,以砾为主,填隙物次之,砂远次之。砂以石英为主,岩屑次之,次圆状。砾见霏细岩、灰岩、砂岩,粒度2-5mm,次圆状。填隙物以方解石为主,褐铁矿少量。岩石为基底式胶结,分选性好。岩芯呈短柱状,手指可刻划,锤击易击碎,击声哑,钻进时钻机平稳,干钻较难钻进,采用直径为127mm合金钻头钻进速度约为30~40分钟/米。室内岩石天然状态单轴抗压强度范围值为1.55~10.8MPa,平均值为4.94MPa,标准值为4.00MPa。该层未揭穿,最大揭露层厚为8.3m。
- (16)₁层全风化粉砂岩:褐红色、红夹白色,母岩成分与结构已基本破坏,岩芯已风化成土状,呈硬可塑状。层厚为0.30~0.80m。局部分布。
- (16)2层强风化粉砂岩:褐红色,母岩成分与结构已大部破坏,岩芯呈短柱状,裂隙发育,结构模糊,手可捏碎,指甲易挖动,锤击很易击碎,干钻易钻进,钻进时钻机平稳,采用直径为127mm合金钻头钻进速度约10~15分钟/米左右。部分钻孔内岩芯呈砂砾岩,含砾石约20%左右,粒径一般为0.2~0.5cm,成分以砂岩、凝灰岩为主,其余由粗砂、砾砂及粉细砂充填,钻进稍困难,采用直径为127mm合金钻头钻进速度约18~23分钟/米左右。层厚为0.40~2.70m。主要分布于场地南

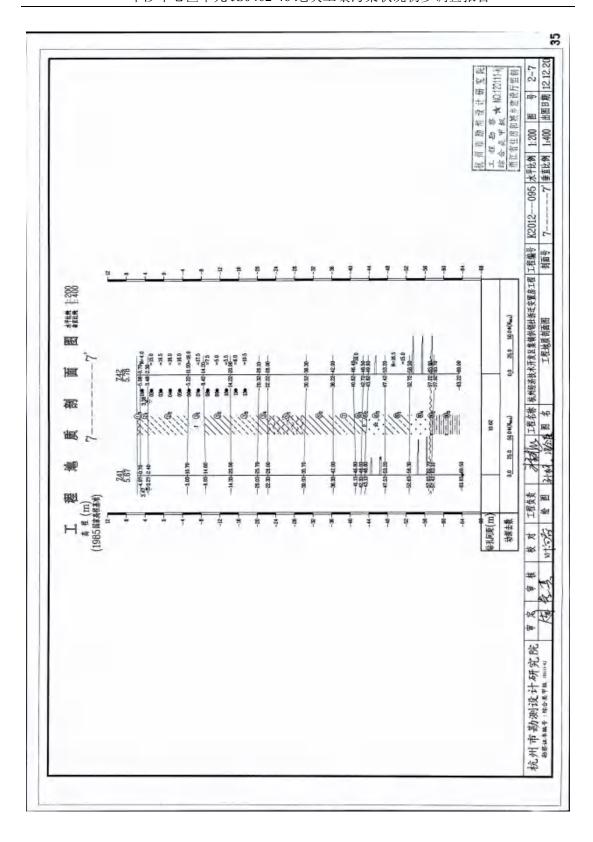

侧区域。

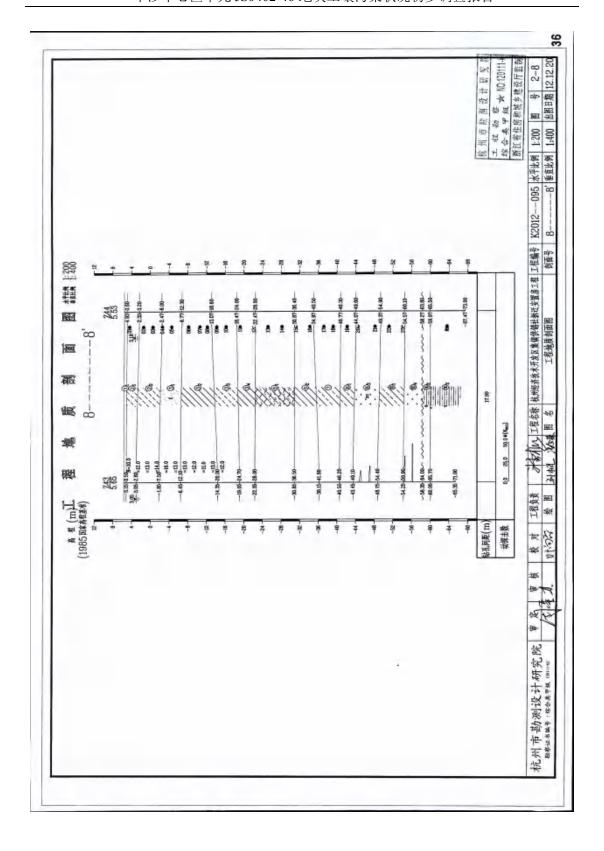

(16)3层中等风化粉砂岩:褐红色,母岩成分与结构部分遭破坏,岩石具有粉砂结构,以粉砂为主,局部为细砂,砂成分以石英为主。局部钻孔为砂砾岩,含砾石约20%左右,粒径一般为0.5~1cm,成分以砂岩、凝灰岩为主,其余由粗砂、砾砂及粉细砂充填,岩芯呈长柱状,手指可刻划,锤击易击碎,击声哑,钻进时钻机平稳,干钻较难钻进,采用直径为127mm合金钻头钻进速度约为25~35分钟/米。室内岩石天然状态单轴抗压强度范围值为3.28~6.08MPa,平均值为4.33MPa,标准值为3.61MPa。本次详勘未揭穿,最大揭露深度为8.70m。

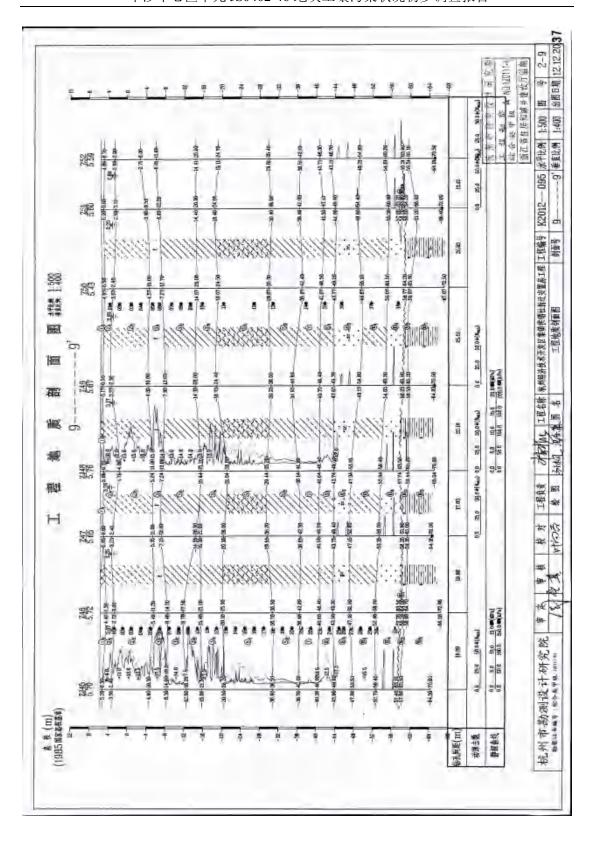

调查地块与引用地勘报告相对位置详见图3.1-2,工程勘察项目部分工程地质剖面图见图3.1-3,工程勘察项目钻孔柱状图见图3.1-4。

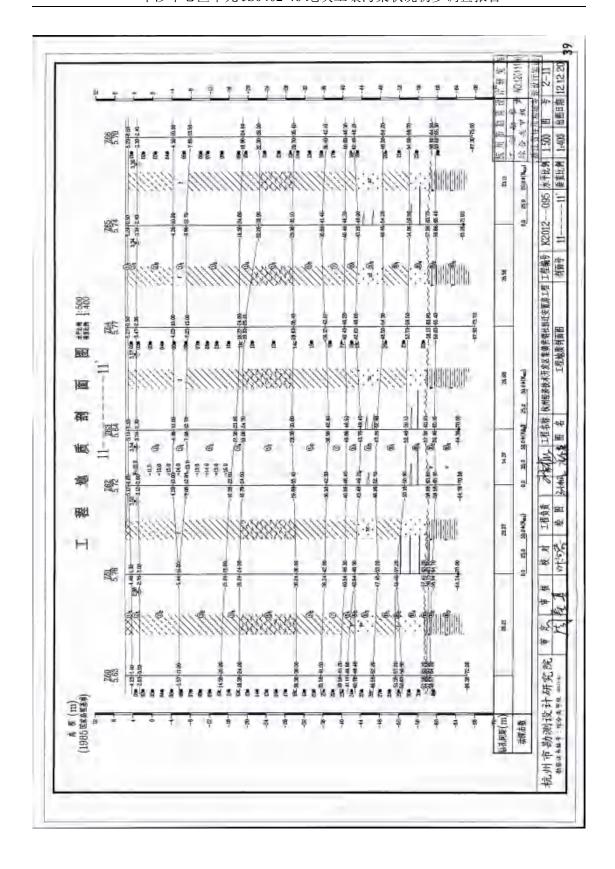


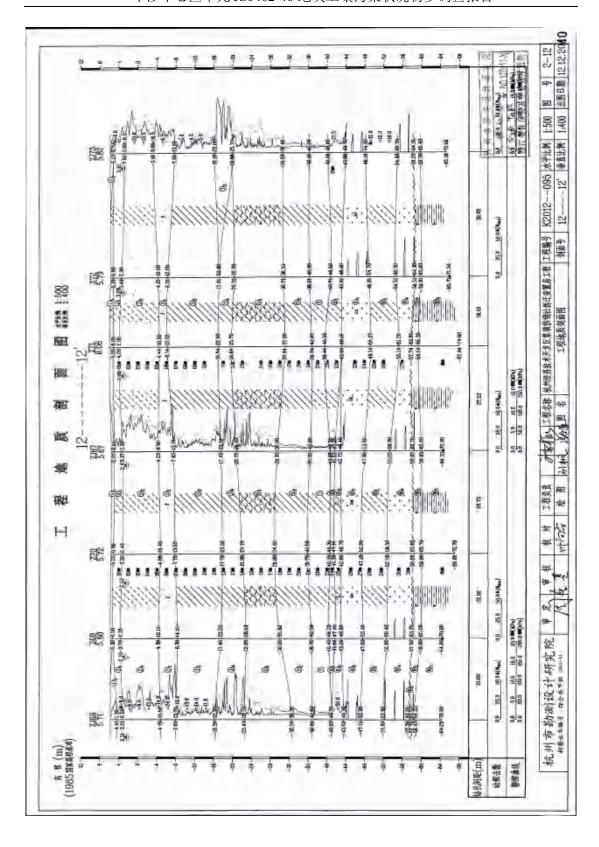

图 3.1-2 调查地块与引用地勘报告相对位置











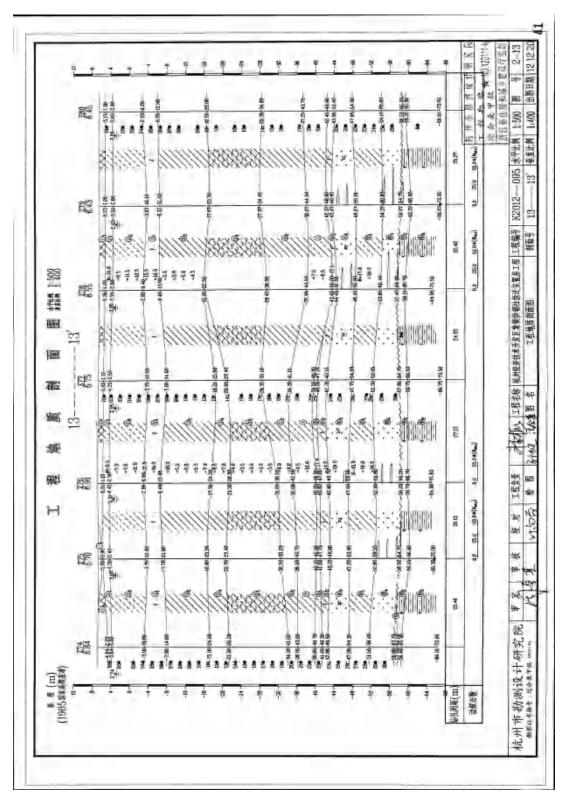
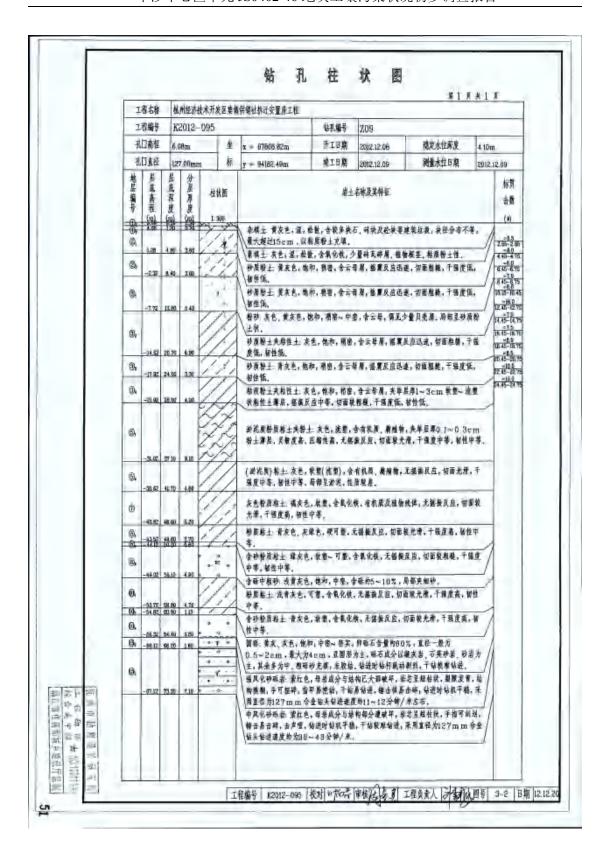



图 3.1-3 杭州经济技术开发区集镇供销社拆迁安置房工程岩土工程地质剖面图

工程基等			41-	To -	. in A . 2	- N F	ALTERNATIVE CO.			W-1	医井上耳	
11 11 12 12 12 12 12 12			200	1		模供	領社拆迁安置族工程	To second	1			
10 10 10 10 10 10 10 10		-		K201	2-095	_		4	7207			
書	3		5.4	£lim.		1	L = 87968.47m	34.35	2012.12.02		3.50m	-
差	- /	-	T - T	- 1		ŧ)	y = 94113.69m	要工品展	2012.12.03	满量水位亚斯	2012.12	001
## 12		是编号	走高程	庭 展 · · · · · · · · · · · · · · · · · ·	植桃蘭			*1	名称页其特征			击数
(2)		-	74	10 3	XX	K	The second second second			建筑垃圾。来径分布不	4.	19
(1)				Ų.	11		素填土: 灰色, 强, 松1 砂质粉土: 黄灰色, 饱	t, 含氧化铁, 力	量時瓦碎屑。植作		Œ.	
图		9			1	1	砂质粉土 黄灰色。她	和,精疲,含云	年月,林顶页在选:	走,初貢相應,干旱度	佳,	
(3)		6,			1//	1	(±#.					
物性性。 特別 大田 大田 大田 大田 大田 大田 大田 大		0,			11	1	皮低, 每性性。		3 1 1 1			
()		0,			1//	1	每性低。 粘质粉土夹贴性土 灰	乞. 我和, 很想	· 幸吉母用, 夫草,	B#1~30m k €~ i	1	ш
(對死馬)站土、灰色、故壁、油鱼、香香花质、腐殖物、无锡数反应、切面无滑、干燥度中等、制性中等、局部呈泄泥、性质效差。 (對死馬)站土、高灰色、故壁、含氧化铁、有机原及植物成体、无蕴数反应、切面较 无滑、干湿度高、粒性中等。 (1) 40 40 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		9,				1	发光照悟质贴土夹粉土	灰色。浅型。	含有机碳、腐殖物	, 夫卓显#0.1~0.3		
(b) 44.30 293 (c) 表面的 4.30 (c) 293 (c) 表面的 4.30 (c) 293 (c) 293 (c) 表面的 4.30 (c) 293 (c) 2		6	-30.49	36.60 N.0		1	The second secon	The second secon	5 0 0	无搭款反应, 切查光度	r.t	
图 任服 体犯 100		0			11/	1	ALE TO SHEET SHEET		快,有机质及植物	成体, 元擅被民伍, 切	重教.	М
图 400 5430 200 200 200 200 200 200 200 200 200 2		400			7. 7. 7.	1			无据做反应,切前:	京九州 ,于张良高。知	世中	- 1
(0) 全球中稀较、及黄灰色、结和、中寒、含碳的剂~10万、易物天雕砂、粉质粘土、热带灰色、可重、含氧化铁、无锡银灰应、如面破光滑、干强度高、物性中等。 (0) 200 300 100 100 200 100 100 200 100 100 100 200 100 1					4 m *	1	m at all to see the contract	, 昔里~ 可重,	合氧化铁,无搭板	及战,初面较粗糙,干	9.8	н
(0), 一种19 (0) (1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		1999			11	1	含砾中糠醛 現黄灰色				加性	Ш
图明 百友 , 英艺、包村、中容、香菜、即味在含量的60万。直任一般为 0.5~2cm,最大物cm,互图形为主,保石或分以最友格、而其种当。移动为 主,实金多为中,核味砂无境。未放生。保适时转杆颠动药物,干燥效理转进。 3. 1. 10 200 1.					. 7	1	合砂粉搭贴土, 青灰色	,牧里,含氧化	款, 无弧弧反应,	初面较光滑。于强度高	. W	
- 18.70 T.20 T.20 T.20 T.20 T.20 T.20 T.20 T.2		6	-28.18	64.30 4.5	-	-	据据 黄灰, 灰色, 包料 0.5~2cm,兼大常	cm . 188	为主,砾石或分以	最友者, 石英号号。 砂		
图度程则27mm令金站头给进速度约10~15分钟/米左右。 中国化砂砾岩、黑红色、每岩设分与结构部分建破环、最等显微性状,手指可削进、 经由最后的,由声空、给进时信机平稳、干燥软度钻进、连用直径划27mm分量	無事	É	-95.39	13.00 7.2			程其化砂砾岩 聚红色 构模糊, 多可推碎、推	,最前成分与幼 甲易抗动,干钻	构已大部破坏。若 易钻进。镍合领易	· 枯星短性较,型限度1 击碎,钻进时钻机平板	1. 结	
15 E	サルコロロ	(6)	-71.20	78.00 \$ 8	+4-1 9		中风化砂砾岩、紫红色 维击易击碎,击声喧。	,带岩或分与结 钻进时往机平器	构部分建破环, 影 、干燥软度钻进,	若呈蜡粒状,手指可)		

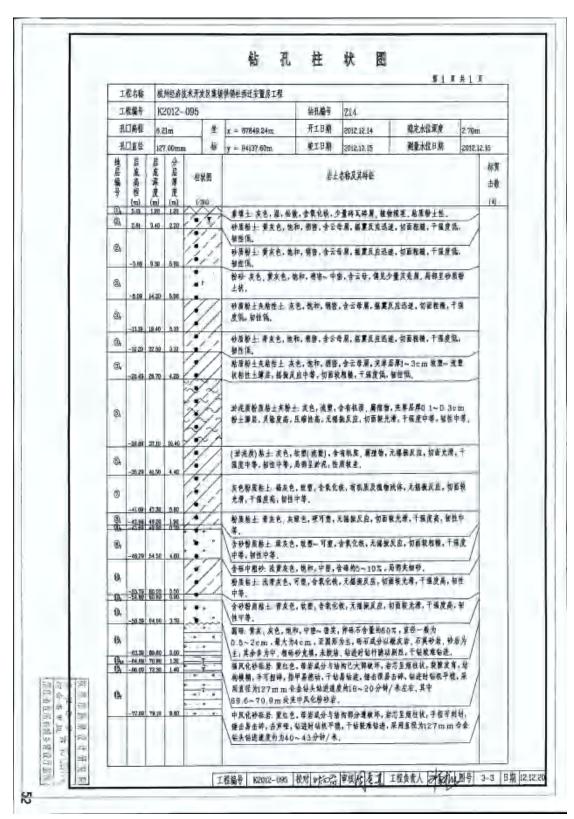


图 3.1-4 杭州经济技术开发区集镇供销社拆迁安置房工程岩土工程钻孔柱状图 3.1.5 地下水

本场地引用地块西侧约17m处的《杭州经济技术开发区集镇供销社拆迁安置 房工程岩土工程勘察报告》(杭州市勘测设计研究院),场地地下水存在两类地 下水,即松散岩类孔隙潜水(以下简称潜水)和松散岩类孔隙承压水(以下简称承压水)。

(1) 潜水

场地潜水主要赋存于上部①填土层及②、③粉砂性土层中。本次详勘期间测得潜水初见水位埋深为地面下1.40~3.90m,相当于85国家高程2.5~4.7m,稳定水位埋深为地面下1.90~6.70m,相当于85国家高程1.35~4.29m。潜水主要接受大气降水、侧向迳流和上沙河河水补给,并以蒸发和以侧向还流为主要排泄方式。通常潜水位随季节和邻近河水水位的变化而变化,并受附近工程降排水施工影响。勘察期间实测潜水水位在地面下0.15~2.90m,相当于85国家高程3.56~5.35m左右。根据区域经验,场地潜水主要受大气降水及地下同层侧向径流补给,并随季节性有所变化,年均水位变化幅度值约1.0~2.0m。

(2) 承压水

场地承压水主要分布于下部的®3含砾中粗砂和⑩4圆砾层中,含水层厚度不大。

根据地块现场调查期间测量的浅层地下水位相对标高情况,可基本判定地块内地下水由西南流向东北,该地块大致等水位线及地下水流向如图3.1-5所示。

图 3.1-5 地块大致等水位线及地下水流向示意图

3.1.6 区域气象特征

杭州地处低纬度,属亚热带季风性气候,四季分明、温和湿润、雨量充沛。 受西北高压和东南暖湿气流共同作用的影响,春季3~6月为梅雨季,气候潮湿多雨。夏季7~9月为台风雨季,气候火热,暴雨量大。秋季气候凉爽宜人。冬季12 月至次年2月,受西北高压气流控制,气温较低,湿度较大,呈阴冷天气为多。

多年平均气温16.1°C,历年最高气温40.4°C,历年最低气温-15°C,一月份平均气温3.8°C,七月份平均气温28.6°C,全年平均气温低于0°C的天数为7.2天。

多年平均降雨量1406.8毫米,日最大降雨量339.2毫米,最大年降雨量2018.2毫米,年最小降雨量837.6毫米,全年平均降雨天数155.3天,年蒸发总量为1355毫米,常年相对湿度80%。

调查地块处于亚热带季风影响范围,冬季多为西北风,夏季多为东南风,常年主导风向偏东,频率8%,最大风速出现在东北向,风速为40.0米/秒以上。11月至次年1月间多雾,多年平均有雾日37.7天,年有雾日最多为83天,年有雾日最少为15天。

3.2 地块周围敏感目标分布

敏感目标指地块周围可能受污染物影响的居民区、学校、医院、饮用水源保护区以及重要公共场所等。下沙中心区单元 JS0402-46 地块位于中心区单元的北部,地块周边 500 米范围内敏感点分布情况见表 3.2-1。敏感点分布图见图 3.2-1。

相对所在方位	相对地块点中心距离	名称		
西侧	17m	学林铭城		
四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	257m	新沙社区居委会		
西北侧	418m	向日葵幼儿园		
北侧	200m	下沙幸福雅苑—B区		
南侧	4m	金沙河		

表 3.2-1 地块周边敏感点分布情况统计表

图 3.2-1 场地周边敏感目标分布图

3.3 地块历史变迁情况

根据场地区域历史资料、卫星图件和业主单位场地负责人访谈获知如下场地及周边地块历史信息:

(1) 地块内部

该地块历史使用情况见表 3.3-1。

用	地类型	用地面积(亩)	合计(亩)	占总面积的比例	
	耕地 ^①	44.2380			
农用地	交通用地 ^②	2.2140 47.2470		99.9%	
	水域及水利设施 [®]	0.7950			
建设用地	建设用地 交通运输用地 ^④		0.0255	0.1%	
合计		47.2725	47.2725	100%	

表3.3-1 调查地块历史用地类型

注: ^①: 耕地主要为水浇地; ^②: 交通用地主要为农村道路; ^③: 水域及水利设施主要为沟渠; ^④: 交通运输用地主要为公路用地。

根据表 3.3-1 及历史影像可知,调查地块内部一直为农用地,历史用地类型主要为农用地,占总面积的 99.9%,建设用地主要为交通运输用地,无工业用地。

(2) 地块外部

地块外部西北侧建有居民区(于 2009 年拆除);北侧(200m 范围内)隔路为克亚时代广场(于 2009 年开始建设,建之前为空地);东侧紧邻空地;西侧为学林铭城(2010 年底搭建工棚,于 2014 年拆除后在 2016 年新建住宅用地学林铭城);南侧为金沙河(于 2012 年修建)。地块外部(200m 范围内)无工业企业生产用地。

调查地块 2005 年、2006 年、2009 年、2010 年、2011 年、2012 年、2014 年、2016 年、2017 年以及 2019 年历史变迁影像见图 3.3-1。

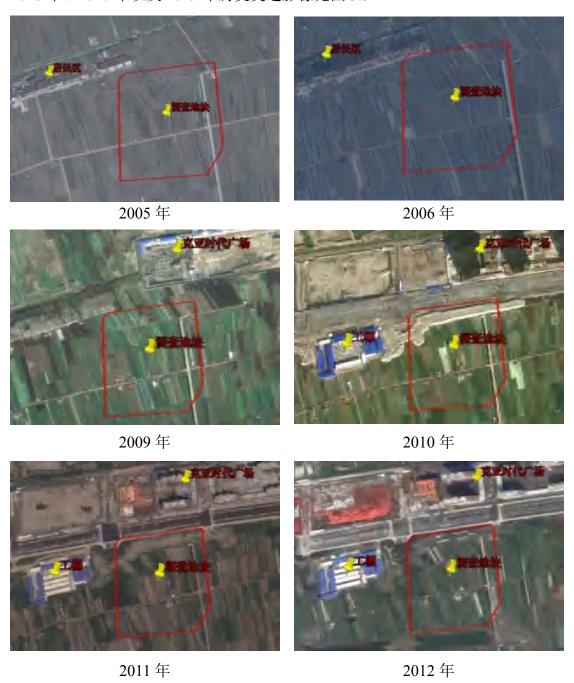


图 3.3-1 历史影像图

3.4 地块使用现状

根据调查,目前地块内部为空地,存在杂草和林地,无生活垃圾及建筑垃圾堆放,无外来覆土及填土。地块现状照片见3.4-1。

场地现状1(北面)

场地现状2(东面)

场地现状3(南面)

场地现状 4 (西面) 图 3.4-1 调查地块现状照片

3.5 地块利用的规划

根据杭州钱塘新区土地整理储备中心申请、杭州市规划和自然资源局核发的下沙中心区单元 JS0402-46 地块所在区域规划图,该调查地块拟用住宅用地 (R21),属于第一类用地。调查场地所在区块规划图详见图 3.5-1。

图 3.5-1 调查场地所在区块规划图

3.6 地块原有污染情况调查

3.6.1 调查地块历史资料收集调查地块历史资料收集及污染源识别

根据现场踏勘及资料收集,本次调查地块内部及周围区域历史上均无工业企业分布(仅 2010 年底在场地西侧搭建工棚,于 2014 年拆除),不涉及可能造成土壤和地下水污染的物质的使用、生产及贮存。调查地块历史上基本为农用地,地块内部为空地,有蔬菜种植,存在杂草和林地,无生活垃圾及建筑垃圾堆放,无外来覆土及填土。综上分析,地块内未引入工业生产相关的污染物,但由于地块历史上基本为农田,长期种植水稻、瓜果、蔬菜等农作物,可能会使用六六六、滴滴涕等有机农药对害虫进行防治与触杀,由此推断地块内亦可能存在有机农药类及其他类型的污染物。场地潜在污染源分析见表 3.6-1。

表3.6-1 场地潜在污染源分析表

序号	关注污 染物 识别原因				
1	有机农药类(滴滴涕、六六六等)	地块农业生产及农作物种植造成有机农药类及 其他污染等。			

3.6.2 人员访谈

对场地知情人员采取咨询以及电话的形式进行访谈,主要访谈对象为地块所在区域政府、环保主管部门、地块原使用者等,访谈内容、对象、方法、内容整理及分析依据《建设用地土壤污染状况调查 技术导则》(HJ 25.1-2019)进行。具体访谈记录表见附件 8.6。

3.6.2.1 有毒有害物质的储存、使用和处置情况分析

经资料收集以及访谈了解,该地块历史上基本为农用地,未有相关的工业企业、仓储项目建设和生产,不涉及有毒有害物质的储存、使用和处置。

3.6.2.2 各类槽罐内物质和泄漏评价

经资料收集以及访谈了解,调查地块不涉及各类槽罐的使用,无相关物质泄漏的情况,同时调查地块周边相邻区域未发生过环境污染事件。

3.6.2.3 固体废物和危险废物的处理评价

经资料收集以及访谈了解,场地内不涉及固废和危险废物的存放和处置,因此,场地内的土壤和地下水环境受固体废物的影响很小。

3.6.2.4 管线、沟渠泄漏评价

经资料收集以及访谈了解,调查地块内无相关的管线和沟渠,对调查地块的 土壤和地下水环境无影响。

3.6.2.5 与污染物迁移相关的环境因素分析

污染的迁移是指污染物在环境中发生的空间位置的相对移动过程,移动的主要方式有机械迁移和物理化学迁移。本次调查主要针对物理化学迁移中可能涉及到风化淋溶作用、溶解挥发作用以及酸碱作用等使污染物以离子或可溶性分子的形式发生溶解-沉淀、吸附以及降解等过程进入土壤和地下水,从而产生污染迁移。与污染迁移有关的因素主要是土壤性质和地下水,调查地块土壤性质和地下水情况详见 3.1.4 节和 3.1.5 节。

3.6.3 其他

调查期间,通过与了解地块现状、历史的相关人员访谈,该地块未发生过环

境泄漏事故,无相关土壤、水体污染记录资料。根据调查,地块及周围区域无废弃和正在使用的各类取水井。

3.7 第一阶段土壤污染状况调查总结

根据场地相关资料分析、现场踏勘以及人员访谈情况,下沙中心区单元 JS0402-46 地块位于中心区单元的北部,原为农用地,地块内及周围区域历史上 无工业企业分布,不存在地下储罐、水池、危险品仓库等设施,地块内部及周边 的用地类型基本为农用地,可能存在农业源污染。

因此,本次调查拟确定滴滴涕、六六六等有机农药类作为调查地块潜在污染物。

4 工作计划

4.1 初步采样分析工作计划

4.1.1 初步采样布点方法的选择

根据国家《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)要求,常见的监测点位布设方法及使用条件详见表 4.1-1。

布点方法 布点图示 特点及适用条件 . . 是将监测区域分成面积相等的若干地块, 从中随 机(随机数的获得可以利用掷骰子、抽签、查随 系统随机布点 机数表的方法) 抽取一定数量的地块, 在每个地 法 块内布设一个监测点位, 抽取的样本数要根据场 . 地面积、监测目的及场地状况确定, 主要适用于 污染分布均匀的场地 . ٠ 适用于土地使用功能不同及污染特征明显差异 的场地,分区布点法是将场地划分成不同的小 分区布点法 区,再根据小区的面积或污染特征确定布点的方 法。对于土地使用功能相近、单元面积较小的生 产区也可将几个单元合并成一个监测地块 适用于各类场地情况,特别是污染分布不明确或 场地原始状况严重破坏的情况,系统布点法是将 系统布点法 监测区域分成面积相等的若干地块,每个地块内 布设一个监测点位 专业判断布点 / 适用于潜在污染明确的场地

表 4.1-1 常见布点方法及适用条件表

根据地块现场调查和资料整理,该调查地块内基本为农用地,无工业企业, 无明确的污染因子分布,故本次初步调查采用系统随机布点法对场地进行布点。 同时,在场地外受人为扰动较小的区域进行对照点设置。

4.1.2 初步采样布点原则

(1) 土壤布点采样原则

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019) 中地块土壤污染状况调查初步采样监测点位的布设要求进行布点:①可根据原地 块使用功能和污染特征,选择可能污染较重的若干工作单元,作为土壤污染物识别的工作单元。原则上监测点位应选择工作单元的中央或有明显污染的部位,如生产车间、污水管线、废弃物堆放处等。②对于污染较均匀的地块(包括污染物种类和污染程度)和地貌严重破坏的地块(包括拆迁性破坏、历史变更性破坏),可根据地块的形状采用系统随机布点法,在每个工作单元的中心采样。③监测点位的数量与采样深度应根据地块面积、污染类型及不同使用功能区域等调查阶段性结论确定。④对于每个工作单元,表层土壤和下层土壤垂直方向层次的划分应综合考虑污染物迁移情况、构筑物及管线破损情况、土壤特征等因素确定。采样深度应扣除地表非土壤硬化层厚度,原则上应采集0~0.5 m表层土壤样品,0.5 m以下下层土壤样品根据判断布点法采集,建议0.5~6 m土壤采样间隔不超过2 m;不同性质土层至少采集一个土壤样品。同一性质土层厚度较大或出现明显污染痕迹时,根据实际情况在该层位增加采样点。⑤一般情况下,应根据地块土壤污染状况调查阶段性结论及现场情况确定下层土壤的采样深度,最大深度应直至未受污染的深度为止。

(2) 地下水采样布点原则

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019) 地下水监测点位的布设方法,地下水监测点位应沿地下水流向布设,可在地下水 流向上游、地下水可能污染较严重区域和地下水流向下游分别布设监测点位。为 初步判断场地水文地质情况及地下水污染水平,本次调查设立原则如下:①至少 设2口以上监测井;②监测井深度及筛管位置应根据场地水文地质情况确定;③ 在场地外部区域土壤对照监测点位处设置地下水对照监测点。

4.2 采样方案

4.2.1 采样布点及深度

4.2.1.1 场地点位布设

依据《建设用地土壤环境调查评估技术指南》中指出:"初步调查阶段,地 块面积≤5000m²,土壤采样点位数不少于 3 个;地块面积>5000m²,土壤采样点 位数不少于 6 个,并可根据实际情况酌情增加。"

下沙中心区单元 JS0402-46 地块面积为 31515m², 大于 5000m², 土壤采样点位数应不少于 6 个。本次初步调查结合系统随机布点法对场地进行布点, 共布置

7个土壤采样点位(S1~S7),其中6个点位在地块内,1个点位在地块外(作为对照点)。

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)要求,场地内按三角形设置 3 个地下水采样点(W1~W3),在地块外设置 1 个地下水背景值采样点(W4)。地下水采样点 W1、W2 和 W3 分别与土壤采样点 S1、S3 和 S4 并点采样。

本次采样的土壤和地下水对照点为同一点位,设置在调查地块南侧的空地(S7/W4),位于地块上游,符合地下水对照点布设要求。

本次地块调查土壤及地下水采样点位坐标见表 4.2-1, 土壤及地下水采样点位布设如图 4.2-1 和 4.2-2 所示。

采样点位名称	经度	纬度
S1/W1	120°18'32.37"E	30°18'59.85"N
S2	120°18'34.10"E	30°18'58.75"N
S3/W2	120°18'36.34"E	30°18'59.92"N
S4/W3	120°18'32.05"E	30°18'55.64"N
S5	120°18'35.99"E	30°18'55.62"N
S6	120°18'36.85"E	30°18'58.25"N
S7/W4	120°18'32.70"E	30°18'52.36"N

4.2-1 土壤及地下水采样点位坐标一览表

图 4.2-1 本次场地调查土壤及地下水采样点位布设图(场内)

图 4.2-2 本次场地调查土壤及地下水采样点位布设图(场外)

4.2.1.2 采样深度及数量

(1) 土壤采样深度

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)中的相关要求,应根据地块土壤污染状况调查阶段性结论及现场情况确定下层土壤的采样深度,最大采样深度应直至未受污染的深度为止。采样深度应扣除地表非土壤硬化层厚度,原则上应采集 0~0.5m 表层土壤样品,0.5m 以下下层土壤样品根据判断布点法采集,建议 0.5~6m 土壤采样间隔不超过 2m,不同性质土层至少采集一个土壤样品,同一性质土层厚度较大或出现明显污染痕迹时,根据实际情况在该层位增加采样点。

根据地勘资料及现场实际采样情况,本次场地调查第一层隔水层位于地下 25~26m。本次地块调查土壤采样深度分别为 0~0.5m、0.5~2m、2~4m、4~6m, 另 S3 点位增加 6~8m、8~10m、10~12m、12~14m、14~16m、16~18m、18~20m、20~22m、22~24m、24m~26m。每个深度采集 1 个样品,土壤样品数量共计 38 个。

每个土壤点位根据以下要求分别送检土壤样品:

- ①表层 0cm~50cm;
- ②存在污染痕迹或现场快速检测设备识别污染相对较重(实际现场检测样品深度分别为 0~0.5m、0.5~1m、1~1.5m、1.5~2m、2~2.5m、2.5~3m、3~4m、4~5m、5~6m,其中 S3 增加 6~7m、7~8m、8~9m、9~10m、10~11m、11~12m、12~13m、13~14m、14~15m、15~16m、16~17m、17~18m、18~19m、19~20m、20~21m、21~22m、22~23m、23m~24m、24~25m、25~26m);
 - ③钻孔底层:
- ④若钻探至地下水位时,原则上应在水位线附近 50cm 范围内和地下水含水层中各采集一个土壤样品;
- ⑤当土层特性垂向变异较大,地层厚度较大或存在明显杂填区域时,可适当增加送检土壤样品。

实际送检样品情况详见 5.2.1 章节。

(2) 地下水采样深度

项目共设置地下水监测井 4 口,本次调查监测井深度为 6m(方案要求 W2 需打到粘土层,实际监测井深度为 26m),每个监测井采集地下水样品 1 个,共 计采集地下水样品 4 个。采样深度位于地下水水面下 0.5m 以下。

4.2.2.3 合规性分析

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019) 要求对本项目监测点位的布设进行了合规性分析,详见表 4.2-2。

表4.2-2 调查监测点位布设合规性分析

类别	HJ25.2-2019要求	本项目实际情况	是否合规
	可根据原地块使用功能和污染特征,选择 可能污染较重的若干工作单元,作为土壤 污染物识别的工作单元。原则上监测点位 应选择工作单元的中央或有明显污染的部 位,如生产车间、污水管线、废弃物堆放 处等。	调查地块内基本为农用地,无工业企业,无明确的污染因子分布,不属于该情况。	合规
	对于污染较均匀的地块(包括污染物种类和污染程度)和地貌严重破坏的地块(包括拆迁性破坏、历史变更性破坏),可根据地块的形状采用系统随机布点法,在每个工作单元的中心采样。	调查地块内基本为农用地,无工业 企业,无明确的污染因子分布,故 本次调查采用系统随机布点法在地 块内布设了6个点位。	合规
土壤	监测点位的数量与采样深度应根据地块面积、污染类型及不同使用功能区域等调查阶段性结论确定。	本次调查监测点位数量及深度是根据地块面积、污染类型及不同使用功能区域等调查阶段性结论来确定的。	合规
点位 的 设	对于每个工作单元,表层土壤和下层土壤垂直方向层次的划分应综合考虑污染物迁移情况、构筑物及管线破损情况、土壤特征等因素确定。采样深度应扣除地表非土壤硬化层厚度,原则上应采集0~0.5 m表层土壤样品,0.5 m以下下层土壤样品根据判断布点法采集,建议0.5~6 m土壤采样间隔不超过2 m;不同性质土层至少采集一个土壤样品。同一性质土层厚度较大或出现明显污染痕迹时,根据实际情况在该层位增加采样点。	本次场地调查扣除地表非土壤硬化层厚度,土壤采样深度分别为0~0.5m、0.5~2m、2~4m、4~6m,另 S3 点位补充6~8m、8~10m、10~12m、12~14m、14~16m、16~18m、18~20m、20~22m、22~24m、24~26m样品,符合采集0~0.5 m表层土壤样品,0.5~6 m土壤采样间隔不超过2 m的要求。	合规
	一般情况下,应根据地块土壤污染状况调查阶段性结论及现场情况确定下层土壤的 采样深度,最大深度应直至未受污染的深度为止。	本次场地调查土壤采样深度为 26m,到粘土层,是根据地块土壤 污染状况调查阶段性结论及现场情况来确定的。	合规
地下水监测点	对于地下水流向及地下水位,可结合土壤 污染状况调查阶段性结论间隔一定距离按 三角形或四边形至少布置3~4个点位监测 判断。	本次场地调查在场地内按三角形设置了3个地下水采样监测点位。	合规
位的 布设	地下水监测点位应沿地下水流向布设,可 在地下水流向上游、地下水可能污染较严 重区域和地下水流向下游分别布设监测点	本次调查在场地内按三角形设置3 个地下水采样监测点位。监测点位 是沿地下水流向布设的。	合规

位。确定地下水污染程度和污染范围时, 应参照详细监测阶段土壤的监测点位,根 据实际情况确定,并在污染较重区域加密 布点。		
应根据监测目的、所处含水层类型及其埋深和相对厚度来确定监测井的深度,且不穿透浅层地下水底板。地下水监测目的层与其他含水层之间要有良好止水性。	本次场地调查监测井深度为6m(其中W2为26m),是根据监测目的、 所处含水层类型及其埋深和相对厚度来确定的,未穿透浅层地下水底板。	合规
一般情况下采样深度应在监测井水面下0.5 m以下。对于低密度非水溶性有机物污染, 监测点位应设置在含水层顶部;对于高密 度非水溶性有机物污染,监测点位应设置 在含水层底部和不透水层顶部。	本次地下水采样深度在1.5m左右 (其中W2的采样深度为25m),在 监测井水面下0.5m以下。	合规
一般情况下,应在地下水流向上游的一定 距离设置对照监测井。	本场地对照监测井布在场地上游方 向,距离场地约70m,对照选点位 置历史无工业厂房分布。	合规
如地块面积较大,地下水污染较重,且地下水较丰富,可在地块内地下水径流的上游和下游各增加1~2个监测井。	本项目不属于该情况。	合规
如果地块内没有符合要求的浅层地下水监 测井,则可根据调查阶段性结论在地下水 径流的下游布设监测井。	本项目不属于该情况。	合规
如果地块地下岩石层较浅,没有浅层地下 水富集,则在径流的下游方向可能的地下 蓄水处布设监测井。	本项目不属于该情况。	合规
若前期监测的浅层地下水污染非常严重, 且存在深层地下水时,可在做好分层止水 条件下增加一口深井至深层地下水,以评 价深层地下水的污染情况。	本项目不属于该情况。	合规

4.2.2 土壤调查采样

本次地块调查采样采用 Geoprobe7822DT 和 XY-100 钻机进行土壤样品采集。 采样点垂直方向的采样深度,根据土层的厚度进行适当调整。现场使用 XRF 和 PID 快速检测仪对剖面样品进行快速检测,在每一层中选择检测浓度高的区段带 回实验室检测,采样深度根据场地土层分布情况确定,最深采样深度达到 26m。

4.2.2.1 土壤采样

本次调查钻机钻孔采样,先钻孔达到所需深度后,获得一定高度的土柱,然后用不锈钢或塑料铲子去除土柱外围的土壤,获取土芯作为土壤样品。

挥发性有机物污染、易分解有机物污染、恶臭污染土壤的采样,采用无扰动

式的采样方法和工具。钻孔取样可采用快速击入法、快速压入法及回转法,主要工具包括土壤原状取土器和回转取土器。槽探可采用人工刻切块状土取样。采样后立即将样品装入密封的容器,以减少暴露时间。

4.2.2.2 土壤样品分装

土壤样品采样前保存用的容器均洗涤无残留目标因子。重金属样品采用了自封袋采集封装。挥发性有机物污染的土壤样品采用了密封的 40ml 棕色吹扫捕集瓶采集封装。半挥发性有机物样品用的采样器用肥皂水和水洗涤,然后用甲醇冲洗,最后用 250ml 广口玻璃瓶采集封装。有机农药类的土壤样品采用了塑料袋或玻璃瓶封装。具体详见表 4.2-3。

项目	容器	取样量	保存方式	取样工具	备注
pH、重金属	自封袋	500g	密封	竹刀、塑料大勺	采样点更换时,用去 离子水清洗
挥发性有机 物	40ml吹扫捕 集瓶	5g左右	密封、冷 藏	不锈钢药匙、 VOCs取样器	土壤样品把250mL瓶 填充满,不留空隙
半挥发性有 机物	250ml 广口玻璃瓶	250g	密封、冷 藏	不锈钢药匙	内置基体改良液(甲醇)密封
有机农药类	塑料袋或玻 璃瓶	1000g	密封、冷藏	取土铲	新鲜样品一般不宜贮存,如需要暂时贮存时,可将新鲜样品装入塑料袋,扎紧袋口,放在冰箱冷藏室或进行速冻固定。

表4.2-3 土壤样品分装方法表

4.2.2.3 土壤样品的保存与流转

挥发性有机物污染的土壤样品和恶臭污染土壤的样品应采用密封性的采样瓶封装,样品应充满容器整个空间;含易分解有机物的待测定样品,可采取适当的封闭措施(如甲醇或水液封等方式保存于采样瓶中)。样品应置于4℃以下的低温环境(如冰箱)中运输、保存,避免运输、保存过程中的挥发损失,送至实验室后应尽快分析测试。挥发性有机物浓度较高的样品装瓶后应密封在塑料袋中,避免交叉污染,应通过运输空白样来控制运输和保存过程中交叉污染情况。具体土壤样品的保存与流转应按照《土壤环境监测技术规范》(HJ/T 166)的要求进行。样品采集完成,在每个样品容器外壁上贴上采样标签,同时在采样原始记录上注明采样编号、样品深度、采样地点等相关信息。

4.2.3 地下水调查采样

4.2.3.1 地下水监测井安装要求

在完成钻孔和土壤样品采集后,安装地下水监测井。地下水监测井安装技术要求如下:

- (1) 监测井材料:内径为 50 mm (Geoprobe7822DT 钻机)/63mm (XY-100钻机)带锯孔的硬质聚氯乙烯管(含氯释放量低于饮用水标准),筛管依据ASTM480-2标准开 0.25 mm 切缝;
 - (2) 监测井深度均为 6 m (其中 W2 为 26m);
- (3) 井管与周围孔壁用清洁的石英砂填充作为地下水过滤层,石英砂填至 筛管顶部 0.5 m 处。过滤层上方用膨润土和水泥密封;
 - (4) 监测井安装井盖和外保护套, 防止地表物质流入监测井内。

4.2.3.2 地下水井安装及样品采集

地下水采样时应依据场地的水文地质条件,结合调查获取的污染源及污染土壤特征,应利用最低的采样频次获得最有代表性的样品。监测井采用直接旋转钻进行钻井。设置监测井时,应同时在地面井口处采取防渗措施。监测井的井管材料应有一定强度,耐腐蚀,对地下水无污染。

在监测井建设完成后必须进行洗井。所有的污染物或钻井产生的岩层破坏以 及来自天然岩层的细小颗粒都必须去除,以保证出流的地下水中没有颗粒。具体 地下水样品的采集方法如下:

(1) 建井

管结构: 井管应由井壁管、过滤管和沉淀管三部分组成。井壁管位于过滤管上,过滤管下为沉淀管。过滤管位于监测的含水层中,长度范围为从含水层底板到地下水位以上的部分,水位以上的部分要在地下水位动态变化范围内。地下水监测井示意图如表 4.2-3 所示。

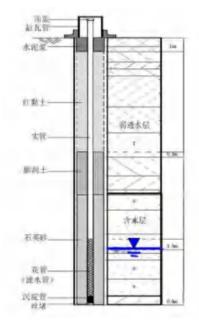


图4.2-3 地下水监测井结构示意图

口径及材质: 井管的内径要求不小于 50mm,以能够满足洗井和取水要求的口径为准,本项目监测井井管内径为 50 mm(Geoprobe7822DT 钻机)/63mm(XY-100 钻机)。

井管全部采用螺纹式连接,各接头连接时不采用任何黏合剂或涂料。井管材质因检测项目的不同而有所差异,各类检测项目的材质选择详见表 4.2-4。

检测项目类别	第一选择	第二选择	禁用材料
金属	聚四氟乙烯 (PTFE)	聚氯乙烯(PVC)	306和316不锈钢
有机物	306和316不锈钢	PVC	镀锌钢和PTFE
金属和有机物	无	PVC和PTFE	306和316不锈钢
有机农药类	PTFE	不锈钢和高密度聚乙 烯(HDPE)	硬质聚氯乙烯和丙乙 烯-苯乙烯-丁二烯共 聚物

表4.2-4 井管材质选择要求

本次场地调查采用 PVC 管作为监测井井管材料。

2) 地下水监测井钻孔

钻孔的直径应至少大于井管外壁 75 mm,以适合砾料和封孔黏土或膨润土的就位。钻孔的深度依监测井所在场区地下水埋深、水文地质特征及含水层类型和分布而定,本次场地调查地下水监测井钻孔深度设置在 6m (其中 W2 为 26m)。监测井钻孔达到要求深度后,宜进行钻孔掏洗,清除钻孔中的泥浆、泥沙等,然后才能开始下管。

3) 地下水监测井下管

下管前应校正孔深,确定下管深度、滤水管长度和安装位置,按下管先后次序将井管逐根丈量、排列、编号、试扣,确保下管深度和滤水管安装位置准确无误。下管作业应统一指挥,互相配合,操作要稳要准,井管下放速度不宜太快,中途遇阻时不准猛墩硬提,可适当地上下提动和缓慢地转动井管,仍下不去时,应将井管提出,扫除孔内障碍后再下。井管下完后,要用升降机将管柱吊直,并在孔口将其扶正、固定,与钻孔同心。

4) 填砾及止水

填砾:砾料选择质地坚硬、密度大、浑圆度好的白色石英砂砾。砾料的砾径,根据含水层颗粒筛分数据确定。填砾的厚度为30mm。填砾的高度,自井底向上直至与实管的交接处,即含水层顶板。

避免滤料填充时形成架桥或卡锁现象,使用导砂管将滤料缓慢输入管壁与井壁中的环形空隙内。滤料在回填前冲洗干净,清洗后使其沥干。

止水: 止水材料必须具备隔水性好、无毒、无嗅、无污染水质等条件。本场地选用球状膨润土回填。止水部位根据场地内含水层分布的情况确定,选择在良好的隔水层或弱透水层处。止水厚度至少从滤料往上 50cm 和滤料下部 50cm; 如果场地内存在多个含水层,每个弱透水层及以上 30cm 至弱透水层以下 30cm 范围内必须用膨润土回填。

膨润土回填时要求每回填 10cm 用水管向钻孔中均匀注入少量的水,注意防止在膨润土回填和注水稳定化的过程中膨润土、井管和套管粘连。

5) 设置标识牌

监测井需设置标识牌。标识牌上需注明监测井编号、井的管理单位和联系电话等信息。

(2) 洗井

为了确保采集到的水样能代表地下水水质,并且避免在钻井期间产生污染, 在地下水监测井安装结束后开展洗井工作。洗井分两次进行,即建井后的洗井和 采样前的洗井。

建井后的洗井:监测井建设完成后,至少稳定8h后开始成井洗井,采用洗井设备,通过超量抽水、汲取等方式进行洗井,至少洗出约3倍井体积的水量,使用便携式水质测定仪对出水进行测定,当浊度小于或等于10NTU时,可结束洗井,当浊度大于10NTU时,应每间隔约1倍井体积的洗井都会亮后对出水进行

测定,结束洗井应同时满足以下条件:①浊度连续三次测定的变化在 10%以内;②电导率连续三次测定的变化在 10%以内;③pH 连续三次测定的变化在±0.1 以内。

成井洗井结束后,监测井至少稳定 24h 后开始采集地下水样品。

采样前的洗井:①将贝勒管缓慢放入井内,直至完全浸入水体中,之后缓慢、匀速地提出井管;②将贝勒管中的水样倒入桶中,估算洗井水量,直至达到3倍井体积的水量;③在现场使用便携式水质测定仪,每间隔5~15min后测定出水水质,直至至少3项检测指标连续三次测定达到稳定标准(pH:±0.1以内;温度:±0.5℃以内;电导率:±10%以内;氧化还原电位:±10mV以内,或在±10%以内;溶解氧:±0.3mg/L以内,或在±10%以内;浊度:≤10NTU,或在±10%以内);如洗井水量在3~5倍井体积之间,水质指标不能达到稳定标准,应继续洗井;如洗井水量达5倍井体体积后水质指标仍不能达到稳定标准,可结束洗井,并根据地下含水层特性、监测井建设过程以及建井材料性状等实际情况判断是否进行样品采集。

(3) 样品采集

为避免污染和交叉污染,在地下水采集期间采用专用的贝勒管进行地下水样品采集,每个水样采集使用一套贝勒管专用工具;地下水样品收集后,立即装入事先准备好的采样瓶中并用聚四氟乙烯薄膜密封。

取水使用一次性贝勒管和提水用的尼龙绳,要求一井一管。取水位置为井中储水的中部,如果在监测井中遇见重油(DNAPL)或轻油(LNAPL)时,对 DNAPL采样设置在含水层底部和不透水层的顶部,对 LNAPL采样设置在油层的顶板处,以保证水样能代表地下水水质。

(4) 地下水样品的保存

用于测定 VOC 的水样可用带塑料螺纹盖的 40mL 小玻璃瓶 (VOA vail)取样,加 HCl 至 pH < 2 使其稳定。在测试 VOC 水样的取样小瓶中不允许存在顶空或者是大于 6 mm 的气泡。溶解氧、五日生化需氧量和半挥发性有机污染物项目采样时,水样也必须注满容器,上部不留空隙。

用于测定可溶解金属物质的水样在野外取样后需先过滤再将其装入聚乙烯容器内,加 HNO3至 pH<2 使其稳定。用于测定总金属含量的水样不需要过滤,也不用加稳定剂。

用于测定总烃、杀虫剂及多环芳烃的水样用带塑料螺纹盖的棕色玻璃瓶保存。用于测定氰化物的水样存放于聚乙烯容器中,加 NaOH 至 pH>12 使其稳定。地下水样品的采集、保存、样品运输和质量保证等参照《地下水环境监测技术规范》(HJ/T 164)的要求。

地下水样品容器、保存技术、样品体积、保存时间的要求见表4.2-5。

表4.2-5 地下水样品容器、保存技术、样品体积、保存时间的要求

监测项目	要求容器	要求保存条件	样品最小 体积或重 量	样品最 大保留 时间
pН	P, G	尽量现场测试	250	12h
氨氮	P, G	硫酸使水样酸化至 pH<2,于 4℃以 下冷藏	250mL	24h
高锰酸盐指	G	1~5℃暗处冷藏	500mL	2d
数	P	-20℃冷冻	500mL	1月
色度	G	尽量现场测试	250mL	12h
臭和味	P, G	1~5℃暗处冷藏	500mL	6h
总硬度	P, G	1L 水样中加浓 HNO₃10ml 酸化	250mL	14d
溶解性总固 体	P, G	1~5℃冷藏	100mL	24h
浊度	P, G	现场测试	250mL	12h
亚硝酸根 (盐)	P, G	1~5℃冷藏避光保存	250mL	24h
硝酸根(盐)	P, G	1~5℃冷藏	250mL	24h
氟化物	P	/	200mL	1月
氰化物	P, G	加 0.25gNaOH 使 pH>12,4℃以下冷 藏	500mL	24h
硫酸根(盐)	P, G	1~5℃冷藏	200mL	一个月
氯化物	P, G	/	100mL	一个月
挥发酚	G	加磷酸酸化至 pH 约 4.0,并加适量 硫酸铜,使样品中硫酸铜质量浓度约 为 1 g/L4℃以下冷藏	1000mL	24h
六价铬	P, G	采集时加入氢氧化钠,调节样品 PH 约为 8	250mL	14d
汞	P, G	HCl, 1%, 如水样为中性, 1 L 水样 中加浓 HCl 10ml	250mL	14d
砷	P, G	1 L 水样中加浓 HNO₃ 10ml	250mL	14d
硒	P, G	1 L 水样中加浓 HCl 2ml 酸化	250mL	14d
铝	P, G, BG	用 HNO ₃ ,pH 1-2	100mL	一个月
镉	P, G			
铅	P, G	│ │ HNO₃,1%,如水样为中性,1L 水		
铜	P	样中加浓 HNO ₃ 10ml	250mL	14d
锌	P			

监测项目	要求容器	要求保存条件	样品最小 体积或重 量	样品最 大保留 时间
铁	P			
锰	P			
镍	P			
菌落总数	G	用灭菌采样瓶采集,1~5℃暗处冷藏 可保存	100 mL	4h
总大肠菌群	G	灭菌采样瓶采集,1~5℃暗处冷藏可 保存	500 mL	4h
石油类	G	加入 HCl 至 pH<2	500mL	7d
阴离子表面 活性剂	P, G	1-5℃冷藏用 H ₂ SO ₄ , pH 1-2	500mL	2d
六六六	G	低温(0-4℃)避光保存	1000mL	24h
滴滴涕	G	低温(0-4℃)避光保存	1000mL	24h
碳氢化合物 (总石油烃)	G 溶剂 (如戊烷) 萃取	用 HCl 或 H ₂ SO ₄ 酸化,pH1-2	1000mL	一个月
挥发性有机 物	G	用 1+10HCL 调至 pH≤2,加入抗坏 血酸 0.01~0.02g 除去残余氯,1~5℃ 避光保存	1000mL	12h
杀虫剂(包括 有机氯、有机 磷、有机氮)	G(溶剂 洗,带聚四 氟乙烯瓶 盖)或P (适用草 甘膦)	1-5℃冷藏,不能用水样冲洗采样容器,不能水样充满容器,萃取应在采样后 24h 内完成	1000mL-30 00mL	萃取 5d

(5) 地下水水质监测注意事项

- ①对需要测水位的井水,在采样前应先测地下水位;
- ②从井中采集水样,必须在充分抽汲后进行,抽汲量不得少于井内水体积的 2 倍,采样深度应在地下水水面 0.5 m 以下,以保证水样能代表地下水水质;
- ③对封闭的生产井可在抽水时从泵房出水管放水阀处采样,采样前应将抽水管中存水放净;
- ④对于自喷的泉水,可在涌口处出水水流的中心采样。采集不自喷泉水时, 将停滞在抽水管的水汲出,新水更替之后,再进行采样;
- ⑤采样前,除五日生化需氧量、有机物和细菌类监测项目外,先用采样水荡 洗采样器和水样容器 2~3 次:
 - ⑥水样采入或装入容器后,立即按要求加入保存剂;
- ⑦采集水样后,立即将水样容器瓶盖紧、密封,贴好标签,一般包括监测井号、采样日期和时间、监测项目、采样人等;

⑧现场填写《地下水采样记录表》,核对采样计划与水样,如有错误或漏采, 应立即重采或补采。

4.3 分析检测方案

编号

W2

W3

30°18'59.92"N

120°18'32.05"E

水

检测点位坐标

根据本次调查为全面了解场地内的环境状况,土壤检测因子包含《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)规定的特征污染物类型和浙江省调查标准规定的 45 项检测指标,同时涵盖场地内的潜在污染物。地下水检测因子包含了《地下水质量标准》(GB/T 14848-2017)、《地下水环境监测技术规范》(HJ/T 164-2004)、《环境影响评价技术导则 地下水环境》(HJ 610-2016)中地下水水质现状监测基本水质因子,同时涵盖场地内的潜在污染物。

本次场地环境调查的土壤、地下水分析检测方案情况见表 4.3-1。

功能区

120°18'32.37"E 《土壤环境质量建设用地土壤污染风 S1险管控标准》(GB36600-2018)表1 30°18'59.85"N 中的45项基本项目:砷、镉、铬(六 120°18'34.10"E S2 / 价)、铜、铅、汞、镍:四氯化碳、氯 30°18'58.75"N 仿、氯甲烷、 1,1-二氯乙烷、1,2-二氯 120°18'36.34"E S3/ 乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、 30°18'59.92"N 系统随机布点 反-1,2-二氯乙烯、二氯甲烷、1,2-二氯 法 120°18'32.05"E S4 丙烷、1,1,1,2-四氯乙烷、 1,1,2,2-四氯 30°18'55.64"N 乙烷、四氯乙烯、1,1,1-三氯乙烷、 120°18'35.99"E **S**5 1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯 30°18'55.62"N 丙烷、氯乙烯、苯、氯苯、 1,2-二氯 土 120°18'36.85"E / **S6** 壤 苯、1,4-二氯苯、乙苯、苯乙烯、甲 30°18'58.25"N 苯、间二甲苯、对二甲苯、邻二甲苯; 硝基苯、苯胺、2-氯酚、苯并[a]蒽、 苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、 萘; pH 值、干物质、石油烃、氯丹 (α-对照 120°18'32.70"E **S**7 背景对照 氯丹、γ-氯丹)、p,p'-滴滴滴、p,p'-滴 30°18'52 36"N 占 滴伊、滴滴涕(o,p'-滴滴涕、p,p'-滴滴 涕)、硫丹(α-硫丹、β-硫丹)、七氯、 α -六六六、 β -六六六、 γ -六六六、 δ -六 六六、六氯苯 120°18'32.37"E 三角形布点法, 水位、pH、总硬度、溶解性总固体、 W1同 S1 30°18'59.85"N 地 常规监测点位, 氨氮、硝酸盐、亚硝酸盐、挥发性酚 下 类、氰化物、耗氧量、氟化物、砷、 120°18'36.34"E 确保地块内土

表4.3-1 土壤、地下水分析检测方案

检测因子

汞、镉、铬(六价)、铁、锰、总大

肠菌群、色、嗅和味、浑浊度、氯化

备注

同 S3

同 S4

壤环境质量符

合相关标准要

	30°18'55.64"N	求	物、硫酸盐、石油类、菌落总数、硒、	
W4	120°18'32.70"E 30°18'52.36"N	背景对照	制、锌、铝、阴离子表面活性剂、铅、镍、四氯化碳、氯仿、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-四氯乙烷、四氯乙烯、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯、对二甲苯、邻二甲苯;硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]克、苯并[b]荧蒽、苯并[a]克、苯并[a]克、苯并[a]克、苯并[b]克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克	对照 点, 同 S7

5 现场采样和实验室分析

本次初步调查采样、送样、检测等各流程时间节点见表 5-1。

采样时间 接样时间 钻孔或建井时间 样品类别 分析时间 2020.09.05 土壤样品 2020.09.05 2020.09.05 2020.09.08-2020.09.23 2020.09.10 2020.09.10-2020.09.23 2020.09.10 2020.09.05 地下水样品 2020.11.16 2020.11.16 2020.11.17

表5-1 采样、送样、检测等各流程时间节点

5.1 现场探测方法和程序

5.1.1 土壤钻孔

使用 Geoprobe7822DT 钻机和 XY-100 钻机的空心螺旋钻来进行土孔钻探作业。土孔钻探深度最深为地下 26m。钻探过程中,现场人员会观察并记录土层特性,钻孔记录详见附件 8.2.1。

5.1.2 地下水检测井安装

土孔钻探完成后,在土孔中放入内径 50mm (Geoprobe7822DT 钻机)/63mm (XY-100 钻机)的聚氯乙烯 (PVC) 井管直至孔底。管子底部是由均匀切割出的带细缝的滤水管,滤水管以上到地面是白管。

地下水监测井深度和滤水管长度由现场工程师根据地下水初见水位及地下水季节性的变化决定。滤管的位置应能够过滤最上层含水层,并适当高于地下水位,从而能够监测潜在的低密度污染物。

将粒度配级良好的清洁石英砂倒入土孔和井管间的空余空间至滤水管以上 30厘米,石英砂的粒度应略大于滤水管滤缝,石英砂上再倒入膨润土直至地面。

5.1.3 监测井清洗

所有新安装的地下水监测井都需要进行清洗,清洗的目的在于去除地下水中 微小颗粒,增强监测区的地下水力联系。采用一次性贝勒管进行清洗作业,直到 井内洗出的水清澈无细小颗粒物。监测井内清洗出的水量至少是井中水量的 5 倍。在取水样前,所有清洗过的监测井均需经过至少 24 小时的稳定。

5.1.4 地下水水位和监测井标高测量

监测井清洗后待地下水位稳定,可以测量监测井井管顶端到稳定地下水位间的距离。标高测量包括地下水监测井井管顶端和监测井附近地面相对场地基准点的标高,精度为+/-0.001米。

5.2 采样方法和程序

5.2.1 土壤采样

本次场地调查采样使用 Geoprobe7822DT 和 XY-100 双套管直接推进技术采集原状连续土样。钻探前将 PVC 采样管装入钢制的外套管中,液压向地下推进外套管过程中,地下原状土样会进入 PVC 采样管中,裁剪 PVC 管可得到特定深度的土壤样品。通过土壤的颜色、气味等初步判断是否受到污染,并立即放入装有冰块的保温箱中送实验室进行化学分析。

现场使用光离子化检测仪(PID)快速检测土壤中的 VOCs,用采样铲在 VOCs 取样相同位置采集土壤置于自封袋中,自封袋中土壤样品体积占 1/2~2/3 自封袋体积,取样后,自封袋置于背光处,避免阳光直晒,取样后在 30 分钟内完成快速检测。检测时,将土样揉碎,放置 10 分钟后摇晃或振荡自封袋约 30 秒,静置 2 分钟后将 PID 探头放入自封袋顶空 1/2 处,紧闭自封袋,记录最高读数。现场使用 X 射线荧光快速检测仪(XRF)对土壤重金属快速定性及其含量的半定量检测。用采样铲在土壤重金属取样相同位置采集土壤置于自封袋中,XRF 仪器开机预热 180s,选择测试结果位置,把仪器对准测试样品样品并保证不透光,按下测试键,约一分钟后仪器界面显示测试结果。取样位置具体根据便携式有机物快速测定仪读数进行调整,快筛记录详见附件 8.2.1 和 8.2.3。本次场地初步调查实际采样及送检样品情况见表 5.2-1。

表5.2-1 土壤实际采样及送检样品情况

采样点	铁口溶床	DID法数/		·		检测结果	(ppm)			是否送检	上摊居协	备注
位	样品深度	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	走省达位	土壤质地	
	0-0.5m	1.2	3	<lod< td=""><td><lod< td=""><td>6</td><td>14</td><td><lod< td=""><td>17</td><td>V</td><td></td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td>14</td><td><lod< td=""><td>17</td><td>V</td><td></td><td>表层样</td></lod<></td></lod<>	6	14	<lod< td=""><td>17</td><td>V</td><td></td><td>表层样</td></lod<>	17	V		表层样
	0.5-1m	0.2	<lod< td=""><td>\leqlod</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	\leq lod	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td>< lod</td><td></td><td>砂质粉土</td><td>/</td></lod<>	< lod		砂质粉土	/
	1-1.5m	0.2	4	\leq lod	<lod< td=""><td>7</td><td>16</td><td><lod< td=""><td>16</td><td></td><td></td><td>/</td></lod<></td></lod<>	7	16	<lod< td=""><td>16</td><td></td><td></td><td>/</td></lod<>	16			/
	1.5-2m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<>	<lod< td=""><td>13</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<>	13	V	砂质粉土、砂土	PID读数 相对较高, 样品间隔 不超过2m
	2-2.5m	0.1	6	\leq lod	<lod< td=""><td>5</td><td>13</td><td><lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<></td></lod<>	5	13	<lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<>	< lod			/
S1	2.5-3m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<>	<lod< td=""><td>18</td><td>√</td><td>砂土</td><td>水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<>	18	√	砂土	水位线附 近,Ni快筛 读数相对 较高,样品 间隔不超 过2m
	3-4m	0.2	7	\leq lod	<lod< td=""><td>4</td><td>11</td><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<>	4	11	<lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<>	13			/
	4-5m	0.1	<lod< td=""><td>< lod</td><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	< lod	<lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td><lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<></td></lod<>	12	<lod< td=""><td>< lod</td><td></td><td></td><td>/</td></lod<>	< lod			/
	5-6m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<>	$\sqrt{}$		底层样
	0-0.5m	0.6	5	< lod	<lod< td=""><td>7</td><td>17</td><td><lod< td=""><td>16</td><td>$\sqrt{}$</td><td> - 砂质粉土</td><td>表层样</td></lod<></td></lod<>	7	17	<lod< td=""><td>16</td><td>$\sqrt{}$</td><td> - 砂质粉土</td><td>表层样</td></lod<>	16	$\sqrt{}$	 - 砂质粉土	表层样
	0.5-1m	0.2	<lod< td=""><td>\leqlod</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂灰粉工</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	\leq lod	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂灰粉工</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂灰粉工</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< lod</td><td></td><td>砂灰粉工</td><td>/</td></lod<></td></lod<>	<lod< td=""><td>< lod</td><td></td><td>砂灰粉工</td><td>/</td></lod<>	< lod		砂灰粉工	/
S2	1-1.5m	0.4	3	<lod< td=""><td><lod< td=""><td>10</td><td>15</td><td><lod< td=""><td>17</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td>15</td><td><lod< td=""><td>17</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过</td></lod<></td></lod<>	10	15	<lod< td=""><td>17</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过</td></lod<>	17	V	砂质粉土、砂土	PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过

采样点	**** 口 浓 辛	DID 法数()			XRF	检测结果	(ppm)			日本法松	上梅毛山	友 xh
位	样品深度	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	→ 是否送检 →	土壤质地	备注
												2m
	1.5-2m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	2-2.5m	0.1	6	<lod< td=""><td><lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<>	13			/
	2.5-3m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td><lod< td=""><td>10</td><td>√</td><td>砂土</td><td>水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td><lod< td=""><td>10</td><td>√</td><td>砂土</td><td>水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td><td><lod< td=""><td>10</td><td>√</td><td>砂土</td><td>水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>21</td><td><lod< td=""><td>10</td><td>√</td><td>砂土</td><td>水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<>	21	<lod< td=""><td>10</td><td>√</td><td>砂土</td><td>水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m</td></lod<>	10	√	砂土	水位线附近、PID读数、Pb快筛读数相对较高,样品间隔不超过2m
	3-4m	0.1	7	<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	4-5m	0.1	< lod	<lod< td=""><td><lod< td=""><td>3</td><td>20</td><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3</td><td>20</td><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<>	3	20	<lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<>	15			/
	5-6m	0.2	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<>	16	<lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>√</td><td></td><td>底层样</td></lod<>	√		底层样
	0-0.5m	0.9	4	<lod< td=""><td><lod< td=""><td>8</td><td>21</td><td><lod< td=""><td>16</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td>21</td><td><lod< td=""><td>16</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<>	8	21	<lod< td=""><td>16</td><td>√</td><td></td><td>表层样</td></lod<>	16	√		表层样
	0.5-1m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
S3	1-1.5m	0.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>21</td><td>V</td><td>砂质粉土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>21</td><td>V</td><td>砂质粉土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>21</td><td>V</td><td>砂质粉土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td><lod< td=""><td>21</td><td>V</td><td>砂质粉土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>21</td><td>V</td><td>砂质粉土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	21	V	砂质粉土	PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m
	1.5-2m	0.3	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td>19</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td>19</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17</td><td><lod< td=""><td>19</td><td></td><td></td><td>/</td></lod<></td></lod<>	17	<lod< td=""><td>19</td><td></td><td></td><td>/</td></lod<>	19			/
	2-2.5m	0.2	3	<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td>砂土</td><td>/</td></lod<>		砂土	/
	2.5-3m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16</td><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<>	16	<lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<>	23			/

采样点	样品深度	PID读数(ppm)			XRF	检测结果	(ppm)			日本法校	上梅毛山	备注
位	件加休及	PID 供数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	是否送检	土壤质地	田仁
	3-4m	0.6	6	<lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<>	V		PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m
	4-5m	0.4	< lod	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td>14</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td>14</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td><lod< td=""><td>14</td><td></td><td></td><td>/</td></lod<></td></lod<>	13	<lod< td=""><td>14</td><td></td><td></td><td>/</td></lod<>	14			/
	5-6m	0.6	7	<lod< td=""><td><lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<>	V		PID读数、 As、Cu快 筛读数相 对较高,样 品间隔不 超过2m
	6-7m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<>	11	<lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<>	17			/
	7-8m	0.5	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 As读数相 对较高,样 品间隔不 超过2m</td></lod<>	V		PID读数、 As读数相 对较高,样 品间隔不 超过2m
	8-9m	0.2	< lod	<lod< td=""><td><lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<>	15			/
	9-10m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td>19</td><td>V</td><td></td><td>PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td>19</td><td>V</td><td></td><td>PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td>19</td><td>V</td><td></td><td>PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15</td><td><lod< td=""><td>19</td><td>V</td><td></td><td>PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m</td></lod<></td></lod<>	15	<lod< td=""><td>19</td><td>V</td><td></td><td>PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m</td></lod<>	19	V		PID读数、Pb、Ni快筛读数相对较高,样品间隔不超过2m

采样点	## D 3/20 P#	DID法数/			XRF	检测结果	(ppm)			日本光松	1. 梅氏地	A 34
位	样品深度	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	是否送检	土壤质地	备注
	10-11m	0.2	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	11-12m	0.5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>19</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6</td><td>19</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td>19</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	6	19	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<>	V		PID读数、 Cu、Pb快 筛读数相 对较高,样 品间隔不 超过2m
	12-13m	0.2	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>22</td><td></td><td></td><td>/</td></lod<>	22			/
	13-14m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>15</td><td>V</td><td></td><td>PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>15</td><td>V</td><td></td><td>PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>15</td><td>V</td><td></td><td>PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td><lod< td=""><td>15</td><td>V</td><td></td><td>PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>15</td><td>V</td><td></td><td>PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<>	15	V		PID读数、 Cu、Ni快 筛读数相 对较高,样 品间隔不 超过2m
	14-15m	0.1	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	15-16m	0.2	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td></td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td></td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td></td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td><td>V</td><td></td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>18</td><td>V</td><td></td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	18	V		PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m
	16-17m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	V		PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m

采样点	样品深度	DID 海粉()			XRF	检测结果	(ppm)			且不法校	上梅岳州	夕沪
位	件的济及	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	→ 是否送检 	土壤质地	备注
	17-18m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	16	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	18-19m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<>	11			/
	19-20m	0.2	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m</td></lod<>	V		PID读数、 As、Pb快 筛读数相 对较高,样 品间隔不 超过2m
	20-21m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	21-22m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	V		PID读数、 Cu快筛读 数相对较 高,样品间 隔不超过 2m
	22-23m	0.1	3	<lod< td=""><td><lod< td=""><td>7</td><td>13</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>13</td><td><lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<></td></lod<>	7	13	<lod< td=""><td>17</td><td></td><td></td><td>/</td></lod<>	17			/
	23-24m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<>	V		PID读数 相对较高, 样品间隔 不超过2m
	24-25m	0.2	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<></td></lod<>	11	<lod< td=""><td>15</td><td></td><td></td><td>/</td></lod<>	15			/
	25-26m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>√</td><td>粘土</td><td>底层样</td></lod<>	√	粘土	底层样
	0-0.5m	0.3	3	<lod< td=""><td><lod< td=""><td>12</td><td>16</td><td><lod< td=""><td>21</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td>16</td><td><lod< td=""><td>21</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<>	12	16	<lod< td=""><td>21</td><td>√</td><td></td><td>表层样</td></lod<>	21	√		表层样
S4	0.5-1m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<>		砂质粉土	/
	1-1.5m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>9</td><td><lod< td=""><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>9</td><td><lod< td=""><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td><lod< td=""><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	9	<lod< td=""><td><lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>23</td><td></td><td></td><td>/</td></lod<>	23			/

采样点	样品深度	DID 法数()			XRF	检测结果	(ppm)			日本法校	上神岳山	夕 yè
位	什吅体及	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	是否送检	土壤质地	备注
	1.5-2m	0.2	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	13	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	V		As快筛读 数相对较 高,样品间 隔不超过 2m
	2-2.5m	0.2	5	<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td>26</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td>26</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td>26</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>26</td><td></td><td></td><td>/</td></lod<>	26			/
	2.5-3m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>17</td><td><lod< td=""><td>20</td><td>V</td><td>砂土]</td><td>水位线附 近,PID读 数、Cu、 Pb、Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td>17</td><td><lod< td=""><td>20</td><td>V</td><td>砂土]</td><td>水位线附 近,PID读 数、Cu、 Pb、Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td>17</td><td><lod< td=""><td>20</td><td>V</td><td>砂土]</td><td>水位线附 近,PID读 数、Cu、 Pb、Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<></td></lod<>	10	17	<lod< td=""><td>20</td><td>V</td><td>砂土]</td><td>水位线附 近,PID读 数、Cu、 Pb、Ni快筛 读数相对 较高,样品 间隔不超 过2m</td></lod<>	20	V	砂土]	水位线附 近,PID读 数、Cu、 Pb、Ni快筛 读数相对 较高,样品 间隔不超 过2m
	3-4m	0.2	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	4-5m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	5-6m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>17</td><td>√</td><td></td><td>底层样</td></lod<>	17	√		底层样
	0-0.5m	0.3	4	<lod< td=""><td><lod< td=""><td>7</td><td>13</td><td><lod< td=""><td>16</td><td>√</td><td>加岳州上</td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>13</td><td><lod< td=""><td>16</td><td>√</td><td>加岳州上</td><td>表层样</td></lod<></td></lod<>	7	13	<lod< td=""><td>16</td><td>√</td><td>加岳州上</td><td>表层样</td></lod<>	16	√	加岳州上	表层样
	0.5-1m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<>		砂质粉土	/
S5	1-1.5m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>18</td><td>V</td><td>砂质粉土、砂土</td><td>PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	18	V	砂质粉土、砂土	PID读数、 Ni快筛读 数相对较 高,样品间 隔不超过 2m
	1.5-2m	0.2	6	<lod< td=""><td><lod< td=""><td>11</td><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td>16</td><td><lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<></td></lod<>	11	16	<lod< td=""><td><lod< td=""><td></td><td>砂土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td>砂土</td><td>/</td></lod<>		砂土	/

采样点	样品深度	PID读数(ppm)			XRF	检测结果	(ppm)			是否送检	土壤质地	友 y}-
位	一件加 休及	PID 实致(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	一定省区位	上環川吧 	备注
	2-2.5m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<>	13			/
	2.5-3m	0.2	3	<lod< td=""><td><lod< td=""><td>6</td><td>11</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td>11</td><td><lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	6	11	<lod< td=""><td><lod< td=""><td>V</td><td></td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td></td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	V		PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m
	3-4m	0.1	7	<lod< td=""><td><lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td>5</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td>5</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td>5</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>5</td><td></td><td></td><td>/</td></lod<>	5			/
	4-5m	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<></td></lod<>	10	<lod< td=""><td>11</td><td></td><td></td><td>/</td></lod<>	11			/
	5-6m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	8	<lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>√</td><td></td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>√</td><td></td><td>底层样</td></lod<>	√		底层样
	0-0.5m	0.5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7</td><td>14</td><td><lod< td=""><td>18</td><td>√</td><td>砂质粉土</td><td>表层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7</td><td>14</td><td><lod< td=""><td>18</td><td>√</td><td>砂质粉土</td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>14</td><td><lod< td=""><td>18</td><td>√</td><td>砂质粉土</td><td>表层样</td></lod<></td></lod<>	7	14	<lod< td=""><td>18</td><td>√</td><td>砂质粉土</td><td>表层样</td></lod<>	18	√	砂质粉土	表层样
	0.5-1m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	1-1.5m	0.3	3	<lod< td=""><td><lod< td=""><td>11</td><td>11</td><td><lod< td=""><td>21</td><td></td><td>砂质粉土、 砂土</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td>11</td><td><lod< td=""><td>21</td><td></td><td>砂质粉土、 砂土</td><td>/</td></lod<></td></lod<>	11	11	<lod< td=""><td>21</td><td></td><td>砂质粉土、 砂土</td><td>/</td></lod<>	21		砂质粉土、 砂土	/
S6	1.5-2m	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<></td></lod<>	<lod< td=""><td>√</td><td></td><td>PID读数 相对较高, 样品间隔 不超过2m</td></lod<>	√		PID读数 相对较高, 样品间隔 不超过2m
	2-2.5m	0.1	6	<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<>	20			/
	2.5-3m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>10</td><td><lod< td=""><td>16</td><td>V</td><td>砂土</td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5</td><td>10</td><td><lod< td=""><td>16</td><td>V</td><td>砂土</td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5</td><td>10</td><td><lod< td=""><td>16</td><td>V</td><td>砂土</td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	5	10	<lod< td=""><td>16</td><td>V</td><td>砂土</td><td>PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	16	V	砂土	PID读数、 Pb快筛读 数相对较 高,样品间 隔不超过 2m

采样点	** 口 次 桩	DID法数/			XRF	检测结果	(ppm)			日本光松	1. 梅氏山	友计
位	样品深度	PID读数(ppm)	As	Cd	Cr	Cu	Pb	Hg	Ni	- 是否送检	土壤质地	备注
	3-4m	0.1	8	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	4-5m	0.2	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14</td><td><lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<></td></lod<>	14	<lod< td=""><td>13</td><td></td><td></td><td>/</td></lod<>	13			/
	5-6m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>$\sqrt{}$</td><td></td><td>底层样</td></lod<>	$\sqrt{}$		底层样
	0-0.5m	0.5	6	<lod< td=""><td><lod< td=""><td>11</td><td>17</td><td><lod< td=""><td>23</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td>17</td><td><lod< td=""><td>23</td><td>√</td><td></td><td>表层样</td></lod<></td></lod<>	11	17	<lod< td=""><td>23</td><td>√</td><td></td><td>表层样</td></lod<>	23	√		表层样
	0.5-1m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td>砂质粉土</td><td>/</td></lod<>		砂质粉土	/
	1-1.5m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td>13</td><td><lod< td=""><td>21</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td>13</td><td><lod< td=""><td>21</td><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td>13</td><td><lod< td=""><td>21</td><td></td><td></td><td>/</td></lod<></td></lod<>	13	13	<lod< td=""><td>21</td><td></td><td></td><td>/</td></lod<>	21			/
	1.5-2m	0.4	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<></td></lod<>	<lod< td=""><td>V</td><td>砂质粉土、砂土</td><td>As快筛读 数相对较 高,样品间 隔不超过 2m</td></lod<>	V	砂质粉土、砂土	As快筛读 数相对较 高,样品间 隔不超过 2m
	2-2.5m	0.1	< lod	<lod	<lod< td=""><td>10</td><td>15</td><td><lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<></td></lod<>	10	15	<lod< td=""><td>20</td><td></td><td></td><td>/</td></lod<>	20			/
S7	2.5-3m	0.3	7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>V</td><td>砂土</td><td>水位线附近,PID读数、As快筛较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>V</td><td>砂土</td><td>水位线附近,PID读数、As快筛较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>V</td><td>砂土</td><td>水位线附近,PID读数、As快筛较高,样品间隔不超过2m</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td><td>V</td><td>砂土</td><td>水位线附近,PID读数、As快筛较高,样品间隔不超过2m</td></lod<></td></lod<>	<lod< td=""><td>17</td><td>V</td><td>砂土</td><td>水位线附近,PID读数、As快筛较高,样品间隔不超过2m</td></lod<>	17	V	砂土	水位线附近,PID读数、As快筛较高,样品间隔不超过2m
	3-4m	0.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	4-5m	0.1	3	<lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<></td></lod<>	15	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td>/</td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>/</td></lod<>			/
	5-6m	0.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<></td></lod<>	<lod< td=""><td>25</td><td>V</td><td>1</td><td>底层样</td></lod<>	25	V	1	底层样

5.2.2 地下水洗井和采样

使用一次性贝勒管进行采样前的洗井工作。洗出的水量至少是井中水量的3倍。

洗井过程中,用已校准的仪器现场测量地下水的 pH、电导率和温度,并现场记录。当连续三次测量值波动均小于±10%时,即可认为地下水达到稳定状态可以采样。

洗井结束后,用一次性贝勒管进行地下水样采集。水样采集时,应尽量避免 贝勒管的晃动对地下水的扰动。

水样采集遵照如下顺序进行:

- 1)挥发性有机物;
- 2)石油类、半挥发性有机物;
- 3)其它分析项目。

采样时,所有样品立即转移至实验室提供的样品瓶中,所有样品瓶都贴有标签,并立即放入装有冰块的保温箱中送实验室进行化学分析。

5.3 实验室分析

5.3.1 样品制备

制样工作室要求:分设风干室。风干室朝南(严防阳光直射土样),通风良好,整洁,无尘,无易挥发性化学物质。

制样工具及容器:风干用白色塘磁盘及木盘;粗粉碎用木锤、木滚、木棒、有机玻璃棒板、硬质木板、无色聚乙烯薄膜;磨样用玛瑙研磨机(球磨机)或玛瑙研钵、白色瓷研钵;筛选用尼龙筛,规格为 2~100 目;装样用具塞磨口玻璃瓶、具塞无色聚乙烯塑料瓶或特制牛皮纸袋,规格视量而定。

风干:在风干室将土样放置于风干盘中,摊成 2~3cm 的薄层,适时地压碎、翻动,拣出碎石、沙砾、植物残体。

样品粗磨:在磨样室将风干的样品倒在有机玻璃板上,用木锤敲打,用木滚、木棒、有机玻璃棒再次压碎,拣出杂质,混匀,并用四分法取压碎样,过孔径 0.25mm(20 目)尼龙筛。过筛后的样品全部置无色聚乙烯薄膜上,并充分搅拌混匀,再采用四分法取其两份,一份样品库存放,另一份作样品的细磨用。粗磨样品可直接用于土壤 pH 值、阳离子交换量、元素有效态含量等项目的分析。

样品细磨:用于细磨的样品再用四分法分成两份,一份研磨到全部过孔径 0.25mm(60 目)筛,用于农药或土壤有机质、土壤全氮量等项目分析;另一份 研磨到全部过孔径 0.15mm(100 目)筛。用于土壤元素全量分析。

样品分类:研磨混匀后的样品,分别装于样品或样品瓶,填写土壤标签一式两份,瓶内或袋内一份,瓶外或袋外贴一份。

注意事项:制样过程中采样时的土壤标签与土壤始终放在一起,严禁混淆,样品名称和编码始终不变;制样工具每处理一份样品后要擦抹洗干净,严防交叉污染;分析挥发性、半挥发性有机物或可萃取有机物无需上述制样,用新鲜样按特定的方法进行样品前处理。

5.3.2 样品保存

按样品名称、编号和粒径分类保存新鲜样品的保存:对于易分解或易挥发等不稳定的组分的样品要采取低温保存的运输方法,并尽快送到实验室分析测试。项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在 4℃以下避光保存,样品要充满容器,避免含有待测组分或对测试有干扰的材料制成的容器盛装保存样品,测定有机物用的土壤样品要选用玻璃容器保存。

预留样品: 预留样品在样品库造册保存。

保存时间:分析取用后的剩余样品一般保留半年,预留样品一般保留2年。 特殊、珍稀、仲裁、有争议样品一般要永久保留。

样品库要求:保存干燥、通风、无阳光直射、无污染;要定期清理样品,防止霉变、鼠害及标签脱落。样品入库、领用和清理均需记录。

5.3.3 分析测定

样品监测分析方法按国家、行业、地方发布的标准分析方法和国家环保总局颁布的监测分析方法。具体监测方法情况详见表5.3-1。

			ACOLO I TI HHILLING	74 1/174 144	
序号	类别	监测项目	分析方法	分析方法标准号或 来源	检出限
1		pH 值	水质 pH 值的测定 玻璃电极法	GB 6920-1986	<0.01pH
2	地下	总硬度	水质 钙和镁总量的测定 EDTA 滴定法	GB/T 7477-1987	<0.05mmol/L
3	水	溶解性总固体	生活饮用水标准检验 方法 感官性状和物理 指标	GB/T 5750.4-2006	/
4		氨氮	水质 氨氮的测定 纳	HJ 535-2009	<0.025mg/L

表5.3-1 样品监测分析方法

序号	类 别	监测项目	分析方法	分析方法标准号或 来源	检出限
			氏试剂分光光度法		
5		硝酸盐	水质 硝酸盐氮的的测 定 紫外分光光度法	НЈ/Т 346-2007	<0.08mg/L
6		亚硝酸盐	水质 亚硝酸盐氮的测 定 分光光度法	GB/T 7493-1987	<0.003mg/L
7		挥发酚	水质 挥发酚的测定 4-氨基安替比林分光 光度法	НЈ 503-2009	<0.0003mg/L
8		氰化物	水质 氰化物的测定 容量法和分光光度法	НЈ 484-2009	<0.004mg/L
9		耗氧量	生活饮用水标准检验 方法 有机物综合指标	GB/T 5750.7-2006	<0.05mg/L
10		氟化物	水质 无机阴离子 (F ⁻ 、Cl ⁻ 、NO ₂ ⁻ 、 Br ⁻ 、NO ₃ ⁻ 、PO ₄ ³⁻ 、 SO ₃ ²⁻ 、SO ₄ ²⁻)的测 定 离子色谱法	НЈ 84-2016	<0.006mg/L
11		砷	水质 汞、砷、硒、铋		$<$ 0.3 μ g/L
12		汞	和锑的测定 原子荧光 法	НЈ 694-2014	<0.04μg/L
13		镉	石墨炉原子吸收法	《水和废水监测分析方法》(第四版) 国家环境保护总局 (2002年)	$<$ 0.09 μ g/L
14		六价铬	水质 六价铬的测定 二苯碳酰二肼分光光 度法	GB 7467-1987	<0.004mg/L
15		总大肠菌群	多管发酵法	《水和废水监测分析方法》(第四版) 国家环境保护总局 (2002年)	20MPN/L
16		菌落总数	生活饮用水标准检验 方法 微生物指标	GB/T 5750.12-2006	/
17		色度	水质 色度的测定 (铂 钴比色法)	GB/T 11903-1989	<5度
18		臭和味	生活饮用水标准检验 方法 感官性状和物理 指标	GB/T 5750.4-2006	/
19		浑浊度	生活饮用水标准检验 方法 感官性状和物理 指标	GB/T 5750.4-2006	1NTU
20		硫酸盐	水质 硫酸盐的测定 铬酸钡分光光度法(试 行)	НЈ/Т 342-2007	<8mg/L
21		氯化物	硝酸银滴定法	GB/T 11896-1989	<10mg/L
22		石油类	水质 石油类的测定 紫外分光光度法(试 行)	НЈ 970-2018	<0.01mg/L

序号	类别	监测项目	分析方法	分析方法标准号或 来源	检出限
23		硒	水质 汞、砷、硒、铋 和锑的测定 原子荧光 法	НЈ 694-2014	<0.4μg/L
24		铁			<0.01mg/L
25		锰			<0.01mg/L
26		铜	水质 32 种元素的测 定 电感耦合等离子体	III 776 2015	<0.04mg/L
27		锌	た 电忽柄	НЈ 776-2015	<0.009mg/L
28		铝	<i>7,2,7,7,</i> 3, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12		<0.009mg/L
29		镍			<0.007mg/L
30		铅	石墨炉原子吸收法	《水和废水监测分析方法》(第四版) 国家环境保护总局 (2002年)	<0.24μg/L
31		阴离子表面活 性剂	水质 阴离子表面活性 剂的测定 亚甲蓝分光 光度法	GB/T 7494-1987	<0.05mg/L
		甲体六六六	水质 有机氯农药和氯 苯类化合物的测定 气 相色谱-质谱法	НЈ 699-2014	<0.056μg/L
32		乙体六六六			$<$ 0.037 μ g/L
		丙体六六六			$<$ 0.025 μ g/L
		丁体六六六			$<$ 0.060 μ g/L
33		o,p'-DDT			$<$ 0.031 μ g/L
33		p,p'-DDT			$<$ 0.043 μ g/L
34		α-氯丹	 水质 有机氯农药和氯		$<0.055\mu g/L$
34		γ-氯丹	苯类化合物的测定 气	НЈ 699-2014	$<0.044 \mu g/L$
35		硫丹 1	相色谱-质谱法		<0.032µg/L
33		硫丹 2			<0.044µg/L
36		六氯苯			<0.043µg/L
37		七氯			<0.042µg/L
38		p,p'-DDD			<0.048µg/L
39		p,p'-DDE			<0.036µg/L
40		四氯化碳			<0.4μg/L(SIM)
41		氯仿			<0.4μg/L(SIM)
42		1,1-二氯乙烷			<0.4μg/L(SIM)
43		1,2-二氯乙烷	 水质 挥发性有机物测		<0.4μg/L(SIM)
44		1,1-二氯乙烯	定 吹扫捕集/气相色	НЈ 639-2012	<0.4μg/L(SIM)
45		顺-1,2-二氯乙 烯	谱-质谱法		<0.4μg/L(SIM)
46		反-1,2-二氯乙 烯			<0.3μg/L(SIM)
47		二氯甲烷			$<$ 0.5 μ g/L(SIM)

序 号	类别	监测项目	分析方法	分析方法标准号或 来源	检出限
48		1,2-二氯丙烷			<0.4μg/L(SIM)
49		1,1,1,2-四氯乙 烷			<0.3μg/L(SIM)
50		1,1,2,2-四氯 乙烷			<0.4μg/L(SIM)
51		1,1,1-三氯乙 烷			<0.4μg/L(SIM)
52		1,1,2-三氯乙 烷			<0.4μg/L(SIM)
53		1,2,3-三氯丙 烷			<0.2μg/L(SIM)
54		氯乙烯			<0.5μg//L(SIM)
55		萘			<0.4μg/L(SIM)
56		三氯乙烯			<0.0004mg/L(SIM)
57		四氯乙烯			<0.0002mg/L(SIM)
58		氯苯			<0.0002mg/L(SIM)
59		1,2-二氯苯			<0.0004mg/L(SIM)
60		1,4-二氯苯			<0.0004mg/L(SIM)
61		苯			<0.0004mg/L(SIM)
62		乙苯			<0.0003mg/L(SIM)
63		苯乙烯			<0.0002mg/L(SIM)
64		甲苯			<0.0003mg/L(SIM)
65		间二甲苯			<0.0005mg/L(SIM)
66		对二甲苯			<0.0005mg/L(SIM)
67		邻二甲苯			<0.0002mg/L(SIM)
68		硝基苯	水质 硝基苯类化合物 的测定 气相色谱-质 谱法	НЈ 716-2014	<0.04μg/L
69		苯胺	水质 苯胺类化合物的测定 气相色谱-质谱 法	НЈ 822-2017	<0.057μg/L
70		2-氯苯酚	水质 酚类化合物的测定 气相色谱-质谱法	НЈ 744-2015	<0.0001mg/L
71		苯并[b]荧蒽			<4.8μg/L
72		苯并[k]荧蒽	气相色谱-质谱法	(第四版)国家环	<2.5μg/L
73		崫	《水和废水监测分析	境保护总局(2002	<2.5μg/L
74		茚并[1,2,3-cd] 芘	方法》	年)	<2.5μg/L
75		苯并[a]芘	水质 多环芳烃的测定		<0.004µg/L
76		苯并[a]蒽	液液萃取和固相萃取	НЈ 478-2009	<0.012μg/L
77		二苯并[a,h]蒽	高效液相色谱法		<0.003µg/L

序 号	类 别	监测项目	分析方法	分析方法标准号或 来源	检出限		
78		总石油烃 (C10-C40)	水质 石油烃类化合物的测定 第2部分:溶剂萃取/气相色谱法	ISO 9377-2:2000	<0.01mg/L		
1		茚并 (1,2,3-c,d)芘			<0.1mg/kg		
2		2-氯酚	2-氯酚 二苯并(a,h)蒽				
3		二苯并(a,h)蒽			<0.1mg/kg		
4		硝基苯	土壤和沉积物 半挥发		<0.09mg/kg		
5		崫	性有机物的测定 气相 HJ 834-2017		<0.1mg/kg		
6		苯并(a)蒽		<0.1mg/kg			
7		苯并(b)荧蒽		<0.2mg/kg			
8		苯并(k)荧蒽		<0.1mg/kg			
9		苯并(a)芘			<0.1mg/kg		
10		苯胺	固体废物 半挥发性 有机物的测定 气相色 谱-质谱法	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附 录 K	<0.07mg/kg		
11		干物质	土壤 干物质和水分的 测定 重量法	НЈ 613-2011	/		
12		萘			$<$ 0.4 μ g/kg		
13		顺-1,2-二氯乙 烯			<1.3μg/kg		
14	土	氯仿			$<$ 1.1 μ g/kg		
15	壤	氯乙烯			$<$ 1.0 μ g/kg		
16		1,1-二氯乙烯			$<$ 1.0 μ g/kg		
17		反-1,2-二氯乙 烯			$<$ 1.4 μ g/kg		
18		1,1-二氯乙烷			$<$ 1.2 μ g/kg		
19		1,1,1-三氯乙 烷	土壤和沉积物 挥发性		$<$ 1.3 μ g/kg		
20		四氯化碳	有机物的测定 吹扫捕	НЈ 605-2011	$<$ 1.3 μ g/kg		
21		苯	集/气相色谱-质谱法		$<$ 1.9 μ g/kg		
22		1,2-二氯乙烷			$<$ 1.3 μ g/kg		
23		三氯乙烯			<1.2µg/kg		
24		1,2-二氯丙烷			<1.1µg/kg		
25		甲苯			<1.3µg/kg		
26		1,1,2-三氯乙 烷			<1.2μg/kg		
27		四氯乙烯			$<$ 1.4 μ g/kg		
28		氯苯			<1.2µg/kg		
29		1,1,1,2-四氯乙 烷			<1.2μg/kg		

序号	类别	监测项目	分析方法	分析方法标准号或 来源	检出限
30		乙苯			<1.2µg/kg
31		间,对-二甲苯			$<$ 1.2 μ g/kg
32		邻-二甲苯			$<$ 1.2 μ g/kg
33		苯乙烯			$<$ 1.1 μ g/kg
34		1,1,2,2-四氯乙 烷			<1.2μg/kg
35		1,2,3-三氯丙 烷			<1.2μg/kg
36		1,4-二氯苯			$<$ 1.5 μ g/kg
37		1,2-二氯苯			$<$ 1.5 μ g/kg
38		氯甲烷			$<$ 1.0 μ g/kg
39		二氯甲烷			$<$ 1.5 μ g/kg
40		pH 值	土壤 pH 值的测定 电位法	НЈ 962-2018	/
41		铜	土壤和沉积物铜、锌、		<1mg/kg
42		镍	铅、镍、铬的测定 火 焰原子吸收分光光度 法	НЈ 491-2019	<3mg/kg
43		铅	土壤质量 铅、镉的测		<0.1mg/kg
44		镉	定 石墨炉原子吸收分 光光度法	GB/T 17141-1997	<0.01mg/kg
45		六价铬	土壤和沉积物 六价铬 的测定 碱溶液提取- 火焰原子吸收分光光 度法	НЈ 1082-2019	<0.5 mg/kg
46		汞	土壤和沉积物 汞、砷、	111 (00 2012	<0.002mg/kg
47		砷	硒、铋、锑的测定 微 波消解/原子荧光法	НЈ 680-2013	<0.01mg/kg
48		石油烃 (C10-C40)	土壤和沉积物 石油烃 (C10-C40)的测定 气 相色谱法	НЈ 1021-2019	<6mg/kg
49		α-六六六			<0.07mg/kg
50		β-六六六			<0.06mg/kg
51		γ-六六六			<0.06mg/kg
52		o,p'-滴滴涕			<0.08mg/kg
52		p,p'-滴滴涕			<0.09mg/kg
52		α-氯丹	土壤和沉积物 有机氯	III 025 2017	<0.02mg/kg
53		γ-氯丹	农药的测定 气相色谱 -质谱法	НЈ 835-2017	<0.02mg/kg
54		α-硫丹			<0.06mg/kg
34		β-硫丹			<0.09mg/kg
55		六氯苯			<0.03mg/kg
56		七氯			<0.04mg/kg
57		p,p'-DDD			<0.08mg/kg

序号	类别	监测项目	分析方法	分析方法标准号或 来源	检出限
58		p,p'-DDE			<0.04mg/kg

5.4 质量保证和质量控制

本项目的质量控制和质量管理分样品采集、样品(运输、流转、保存及制备) 和实验室分析的质量控制和质量管理三个部分。

5.4.1 样品采集质量控制

(1) 采样前准备

组织准备:在项目设施前,我单位与杭州天量检测科技有限公司进行了充分的协调沟通,了解本次采样检测的目的、内容、点位、参数、样品量以及现场情况等,以便后续采样工作准确、顺利地实施。

技术准备:研究本项目方案的点位、参数、样品数量以及相应检测标准等详细信息,制定符合相关国家规范的采样计划、样品流转方案及实验室检测方案。

采样器具准备:依据前期研究及现场踏勘,准备相应的采样设备,包括但不限于:Geoprobe7822DT钻机、XY-100钻机、AMS手动土壤取样器、手持便携式GPS、X射线荧光快速检测仪(XRF)、光离子化检测仪(PID)水准测量仪和水位仪等设备。

(2) 采样点位

依据采样方案和现场实际情况,在样品采集之前进行点位确认,记录GPS信息,并做标记。在采样工作实施过程中,由于现场堆积物及地面硬化影响,在不影响点位密度及用途的情况下,可根据现场实际情况对个别点位进行挪动,并及时更新GPS记录信息。

(3) 样品采集

现场钻探工作开始前对所有现场使用的仪器进行了校正;依照规范操作流程 采样设备在使用前后进行清洗;每个钻孔开始钻探前,对钻探和采样工具进行除 污程序;在样品采集过程中使用一次性丁腈手套与贝勒管采集地下水样品,避免 交叉污染;土壤钻孔前清除地表堆积腐殖质等堆积物;在截取采样管过程中,现 场进行PID测定和XRF测定,并详细记录土样的土质、颜色、湿度、气味等性状。

在地下水采样前,使用贝勒管对地下水井进行充分洗井(洗井水量约5-6倍井管体积):在充分洗井24小时后采集水样:在水样采集前对水样的pH、水

温、水位进行测定;使用实验室提供的清洁采样容器采集水样;在现场对土壤和地下水容器进行标注,标注内容包括日期、监测井编号、项目名称、采集时间以及所需分析的参数;填写样品流转单,样品流转单内容包含项目名称、样品名称、采样时间和分析参数等内容;样品被送达实验室前,所有样品被置于放有冰块的保温箱内(约4℃)避光保存和运输,确保样品的时效性;样品流转单随样品一并送至实验室;现场工程师对采样的过程进行详细的拍照记录;现场作业与实验室分析工作皆由专业人员完成。

根据现场样品照片(附件8.1)、钻孔记录(附件8.2.1)、洗井建井记录(附件8.2.2)和现场快速检测记录(附件8.2.3),场地内各点位土壤地下水样品无明显异味,未发现明显有机污染迹象,且土壤样品PID检测结果、 XRF检测结果和 地下水样品pH及温度数据未见明显异常。结合各点位样品分析结果,各点位有 机物检出项目较少,检测值均较低,实验室分析结果与现场观察和测量结果的一致性较好。

(4) 采样小组自检

每个土壤及地下水点采样结束后及时进行样点检查,检查内容包括:样点位置、样品重量、样品标签、样品防沾污措施、记录完整性和准确性,同时拍照记录。

每天结束工作前进行日检,日检内容包括: 当天采集样品的数量、检查样品标签以及与记录的一致性。建立采样组自检制度,明确职责和分工。对自检中发现的问题及时进行更正,保证采集的样品具有代表性。

(5) 质量监督员检查

在采样过程中,由我单位的监督员对采样人员在整个采样过程的规范性进行监督和检查,主要包括以下内容:

- 1)采样点检查:样点的代表性与合理性、采样位置的正确性等;
- 2)采样方法检查:采样深度及采样过程的规范性;
- 3)采样器具检查:采样器具是否满足采样技术规范要求;
- 4)采样记录检查:样品编号、样点坐标(经纬度)、样品特征(类型、质地、颜色、湿度)、采样点周边信息描述的真实性、完整性等;每个采样点位拍摄的照片是否规范、齐全;
 - 5)样品检查:样品性状、样品重量、样品数量、样品标签、样品防玷污措施、

记录表一致性等。

(6) 采样记录

采样过程中,要求正确、完整地填写样品标签和现场记录表。样品流转记录 单详见附件8.2.5和附件8.2.6。

5.4.2 样品运输质量控制

样品采集完成后,由专车送至实验室,并及时冷藏。样品运输过程中的质量控制内容包括:

- 1)样品装运前,核对采样标签、样品数量、采样记录等信息,核对无误后方可装车:
 - 2)样品置于4℃冷藏箱保存,运输途中严防样品的损失、混淆和沾污;
- 3)认真填写样品流转单,写明项目联系人、联系方式、样品名称、样品状态、 检测参数等信息;
 - 4)样品运抵实验室后及时清理核对,无误后及时将样品送入冷库保存。

5.4.3 样品流转质量控制

样品送达实验室后,由样品管理员进行接收。样品管理员对样品进行符合性 检查,确认无误后在样品流转单上签字。

符合性检查包括:样品包装、标识及外观是否完好;样品名称、样品数量是否与原始记录单一致;样品是否损坏或污染。

5.4.4 样品保存质量控制

在样品采样过程中按照国标要求对样品进行保存低温保存、加固定剂、按规定时间内及时送至实验室等方式以保证样品的有效性,运至实验室时及时接样,按照要求对样品进行保存和交样,样品交接室配有温度控制系统的冷库专门用于接样后样品制样前的存放,保证样品在<4℃的温度环境中保存。

5.4.5 样品制备质量控制

样品制备过程的质量控制主要在样品风干区和样品制样过程中进行,风干区和制样区相互独立,并进行了有效隔离,能够避免相互之间的影响。样品制备场所是在通风、整洁、无扬尘、无易挥发化学物质的房间内进行,且每个制样操作岗位有独立的空间,避免样品之间相互干扰和影响。

制样过程中的注意事项:

- (1) 在通风良好,整洁,无尘,无易挥发性化学物质的土壤制样室内采用标准制样工具,对样品进行风干、粗磨、留样保存、细磨、分类。制样过程中采样时的土壤标签与土壤始终放在一起,严禁混淆,样品名称和编码始终不变;制样工具每处理一份样品后擦抹洗干净,严防交叉污染。
 - (2) 保持工作室的整洁,整个过程中必须穿戴一次性丁腈手套;
 - (3) 制样前认真核对样品名称与流转单中名称是否一一对应;
 - (4) 人员之间进行互相监督,避免研磨过程中样品散落、飞溅等;
 - (5)制样工具在每处理一份样品后均进行擦抹(洗)干净,严防交叉污染;
- (6) 当某个参数所需样品量取完后,及时将样品放回冷库原位,供实验室 其他部门使用。
 - (7) 按照规范要求对土壤和水质样品进行留样。

5.4.6 实验室分析质量控制

在实验室内部实行质控程序,包括平行样品、方法空白、实验室控制样、基体加标等质控手段,质量控制报告详见附件 8.5。具体如下:

(1)标准样品:例行分析中,每批样品在测定的精密度合格的前提下,标准样品测定值必须落在标准样品浓度及其不确定范围内,否则本批结果无效,需重新分析测定。

根据实验室分析结果,标准样品检测结果均符合精度控制标准,标准样品分析结果可接受。

(2) 加标回收:选测项目无标准物质或质控样品时,可用加标回收实验来检查测定准确度。加标率:在一批试样中,随机抽取 10%~20%试样进行加标回收测定。样品数不足 10 个时,适当增加加标比率。每批同类型试样中,加标试样不应小于 1 个。加标量:加标量视被测组分含量而定,含量高的加入被测组分含量的 0.5~1.0 倍,含量低的加 2~3 倍,但加标后被测组分的总量不得超出方法的测定上限。加标浓度宜高,体积应小,不应超过原试样体积的 1%,否则需进行体积校正。

合格要求:加标回收率应在加标回收率允许范围之内。当加标回收合格率小于 70%时,对不合格者重新进行回收率的测定,并另增加 10%~20%的试样作加标回收率测定,直至总合格率大于或等于 70%以上。

本项目做了土壤检测因子7个加标样、地下水检测因子30个加标样,根据

实验室分析结果,土壤、地下水各样品的加标回收率均在标准范围 50~130%之间,分析样品加标回收率可接受。

(3) 空白样: 现场采样阶段需要由实验室制备运输空白样,实验室分析阶段需要制备方法空白样。空白样分析可检查样品运输和实验室分析阶段是否存在外来因素的污染,以至影响分析结果的准确性。如果空白样的挥发性有机物存在检出,则样品分析结果需进行校正。

本项目做了土壤、地下水检测因子所有的样品全程空白样、样品运输空白样和实验室方法空白样,其中地下水还做了设备空白样,根据实验室分析结果,样品全程空白样、样品运输空白样、实验室方法空白样和设备空白样均未检出,空白样无污染,空白样分析结果可接受。

(4) 平行样: 质量控制样品是在采样的同时额外采集一个样品,以此来检验样品采集和分析过程中是否出现错误,如交叉污染的可能性、采样方法正确与否或分析方法的可靠性。同时,从质量控制样可以分析样品从不同的地点和深度采集时可能出现的随机变化,以及分析样品是否具有代表性。

本项目做了地下水样品 1 个点位现场平行样、1 个点位室内样品平行样、1 个点位内部密码平行样;做了土壤样品各 4 个现场平行样、密码平行样和 5 个室内样品平行样,根据检测结果,各样品平行样检测结果的相对偏差均符合要求,平行样分析结果可接受。

6 结果和评价

6.1 地块的地质和水文地质条件

6.1.1 地块地层结构

各点位场地地下土壤剖面组成从上至下详细地层结构见表 6.1-1(钻孔原始记录见附件 8.2.1)。

点位	地层结构
C1	0-1.7m: 砂质粉土、棕黄色、稍密、潮、无气味; 1.7-3.5m: 砂土、棕黄色、稍密、
S1	重潮、无气味; 3.5-6m: 砂土、灰色、中密、极潮、无气味。
92	0-1.3m: 砂质粉土、棕黄色、松散、潮、无气味; 1.3-3m: 砂土、棕黄色、稍密、
S2	极潮、无气味; 3-6m: 砂土、灰色、稍密、极潮、无气味。
	0-1.5m: 砂质粉土、棕黄色、稍密、潮、无气味; 1.5-3.7m: 砂土、棕黄色、稍密、
S3	重潮、无气味; 3.7-25m: 砂土、灰色、稍密、极潮、无气味; 25-26m: 粘土、灰
	色、中密、极潮、无气味。
S4	0-1.5m: 砂质粉土、棕黄色、松散、潮、无气味; 1.5-2.5m: 砂土、棕黄色、稍密、
34	极潮、无气味; 2.5-6m: 砂土、灰色、中密、极潮、无气味。
0.5	0-1.2m: 砂质粉土、棕黄色、稍密、潮、无气味; 1.2-2.8m: 砂土、棕黄色、稍密、
S5	极潮、无气味; 2.8-6m: 砂土、灰色、中密、极潮、无气味。
96	0-1.4m: 砂质粉土、棕黄色、稍密、潮、无气味; 1.4-3m: 砂土、棕黄色、稍密、
S6	重潮、无气味; 3-6m: 砂土、灰色、中密、极潮、无气味。
97	0-1.6m: 砂质粉土、棕黄色、稍密、潮、无气味; 1.6-3.2m: 砂土、棕色、稍密、
S7	重潮、无气味; 3.2-6m: 砂土、灰色、中密、极潮、无气味。

表6.1-1 土壤剖面地层结构

6.1.2 水文地质条件

现场调查期间测量的浅层地下水位相对标高在 4.125m(W2)至 4.571m(W3) 之间。其各监测井水位标高统计如下,详见表 6.1-2。

点位	地面高程(m)	埋深(m)	水位相对标高(m)	备注
W1	6.153	2	4.153	/
W2	6.225	2.1	4.125	/
W3	6.371	1.8	4.571	/
W4	6.256	1.8	4.456	/

表6.1-2 各监测井水位标高汇总表

6.2 评价标准

6.2.1 土壤评价标准

本场地规划用地性质为居住用地,属于《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中规定的第一类用地,因此本次检测因子根据

《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)第一类用地筛选值进行评价,评价标准见表 6.2-1。

表 6.2-1 建设用地土壤污染风险筛选值 单位: mg/kg

序号		分析检测项目	GB36600-2018 第一类用地筛选值
1		砷	20^{\odot}
2	- A	镉	20
3	重金	铬 (六价)	3.0
4	属和	铜	2000
5	无机 ##	铅	400
6	物	汞	8
7		镍	150
8		四氯化碳	0.9
9		氯仿	0.3
10		氯甲烷	12
11		1,1-二氯乙烷	3
12		1,2-二氯乙烷	0.52
13		1,1-二氯乙烯	12
14		顺,1,2-二氯乙烯	66
15		反, 1, 2-二氯乙烯	10
16		二氯甲烷	94
17		1,2-二氯丙烷	1
18		1, 1, 1, 2-四氯乙烷	2.6
19	挥发	1,1,2,2-四氯乙烷	1.6
20	性有	四氯乙烯	11
21	机物	1, 1, 1-三氯乙烷	701
22	7/0/2	1, 1, 2-三氯乙烷	0.6
23		三氯乙烯	0.7
24		1, 2, 3-三氯丙烷	0.05
25		氯乙烯	0.12
26		苯	1
27		氯苯	68
28		1, 2-二氯苯	560
29		1, 4-二氯苯	5.6
30		乙苯	7.2
31		苯乙烯	1290
32		甲苯	1200
33		间二甲苯+对二甲苯	163
34		邻二甲苯	222
35		硝基苯	34
36		本胺 2.氨苯酚	92
37	半挥	2-氯苯酚	250
38	发性	苯并[a]蒽	5.5
39	有机	苯并[a]芘	0.55
40	物	苯并[b]荧蒽	5.5
41		苯并[k]荧蒽	55
42		一	490
43		二苯并[a、h]蒽	0.55

序号		分析检测项目	GB36600-2018 第一类用地筛选值
44		茚并[1, 2, 3-c, d]芘	5.5
45		萘	25
46		氯丹 ^②	2.0
47		p,p'-DDE	2.0
48		p,p'-DDD	2.5
49		滴滴涕 [®]	2.0
50	此十五十	硫丹⁴	234
51	特征	七氯	0.13
52	因子	α六六六	0.09
53		β六六六	0.32
54		γ六六六	0.62
55		六氯苯	0.33
56		石油烃(C10-C40)	826

注:①具体地块土壤中污染物检测含量超过筛选值,但等于或低于土壤背景水平的,不纳入污染地块管理。土壤背景值参见附录 A。

- ②氯丹为α-氯丹、γ-氯丹两种物质含量总和。
- ③滴滴涕为 o,p'-滴滴涕、p,p'-滴滴涕两种物质含量总和。
- ④硫丹为α-硫丹、β-硫丹两种物质含量总和。

6.2.2 地下水评价标准

根据调查可知,本地块地下水污染羽不涉及地下水饮用水源补给径流区和保护区,故本地块地下水环境质量的评价工作主要参照《地下水质量标准》(GB/T14848-2017)IV类水标准进行评价,石油类参照《地表水环境质量标准》(GB3838-2002)IV类水标准进行评价。《地下水质量标准》(GB/T14848-2017)中未涉及指标,参照《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值进行评价。

根据上述原则,本次调查地下水分析检测项目的评价标准见表 6.2-2。

序号 I类 II类 III类 IV类 V类 指标 5.5≤pH≤6.5 pH<5.5 或 1 рН $6.5 \le pH \le 8.5$ 8.5≤pH≤9.0 pH>9.0 总硬度(以CaCO₃)(mg/L) ≤300 ≤450 >650 2 ≤150 ≤650 3 溶解性总固体 (mg/L) ≤300 ≤500 ≤1000 <2000 >2000 4 氨氮(以N计) (mg/L) ≤ 0.02 ≤ 0.10 ≤0.50 ≤1.50 >1.50 5 硝酸盐(以N计) (mg/L) >30.0 < 2.0 < 5.0 < 20.0 < 30.0 6 亚硝酸盐(以N计)(mg/L) ≤0.01 ≤0.10 ≤1.00 ≤4.80 >4.80 7 挥发性酚类(以苯酚计)(mg/L) ≤ 0.001 ≤0.001 ≤ 0.002 ≤0.01 >0.01 氰化物 (mg/L) 8 ≤0.001 ≤0.05 >0.1 ≤0.01 ≤ 0.1 耗氧量(COD_{Mn}法,以O₂计) 9 ≤1.0 ≤ 2.0 ≤3.0 >10.0 ≤ 10.0 (mg/L)10 氟化物 (mg/L) ≤1.0 ≤1.0 ≤1.0 >2.0 ≤ 2.0

表 6.2-2 地下水质量常规指标及限值

序号	指标	I类	II类	III类	IV类	V类		
11	砷(mg/L)	≤0.001	≤0.001	≤0.01	≤0.05	>0.05		
12	汞(mg/L)	≤0.0001	≤0.0001	≤0.001	≤0.002	>0.002		
13	镉(mg/L)	≤0.0001	≤0.001	≤0.005	≤0.01	>0.01		
14	铬(六价)(mg/L)	≤0.005	≤0.01	≤0.05	≤0.10	>0.10		
15	铁 (mg/L)	≤0.1	≤0.2	≤0.3	≤2.0	>2.0		
16	锰 (mg/L)	≤0.05	≤0.05	≤0.10	≤1.50	>1.50		
17	总大肠菌群(MPN/100mL 或 CFU/100mL)	≤3.0	≤3.0	≤3.0	≤100	>100		
18	色(铂钴色度单位)	≤5	≤5	≤15	≤25	>25		
19	嗅和味	无	无	无	无	有		
20	浑浊度/NTU	≤3	≤3	≤3	≤10	>10		
21	氯化物(mg/L)	≤50	≤150	≤250	≤350	>350		
22	硫酸盐(mg/L)	≤50	≤150	≤250	≤350	>350		
23	石油类 ^① (mg/L)	≤0.05	≤0.05	≤0.05	≤0.5	≤1.0		
24	菌落总数(CFU/mL)	≤100	≤100	≤100	≤1000	>1000		
25	硒(mg/L)	≤0.01	≤0.01	≤0.01	≤0.1	>0.1		
26	铜(mg/L)	≤0.01	≤0.05	≤1.00	≤1.50	>1.50		
27	锌 (mg/L)	≤0.05	≤0.5	≤1.00	≤5.00	>5.00		
28	铝 (mg/L)	≤0.01	≤0.05	≤0.20	≤0.50	>0.50		
29	阴离子表面活性剂(mg/L)	不得检出	≤0.1	≤0.3	≤0.3	>0.3		
30	铅 (mg/L)	≤0.005	≤0.005	≤0.01	≤0.10	>0.10		
31	六六六(总量)(μg/L) [®]	≤0.01	≤0.50	≤5.00	≤300	>300		
32	滴滴涕(总量)(μg/L) ^④	≤0.01	≤0.10	≤1.00	≤2.00	>2.00		
33	镍(mg/L)	≤0.002	≤0.002	≤0.02	≤0.10	>0.10		
34	四氯化碳(μg/L)	≤0.5	≤0.5	≤2.0	≤50.0	>50.0		
35	氯仿(μg/L)	≤0.5	≤6	≤60	≤300	>300		
36	1,1-二氯乙烷(mg/L) ^②			0.2	23			
37	1,2-二氯乙烷(μg/L)	≤0.5	≤3.0	≤30.0	≤40.0	>40.0		
38	1,1-二氯乙烯(μg/L)	≤0.5	≤3.0	≤30.0	≤60.0	>60.0		
39	顺-1,2-二氯乙烯(μg/L)	≤0.5	≤5.0	≤50.0	≤60.0	>60.0		
40	反-1,2-二氯乙烯(μg/L)	≤0.5	≤5.0	≤50.0	≤60.0	>60.0		
41	二氯甲烷(μg/L)	≤1	≤2	≤20	≤500	>500		
42	1,2-二氯丙烷(μg/L)	≤0.5	≤0.5	≤5.0	≤60.0	>60.0		
43	1,1,1,2-四氯乙烷(mg/L) ^②	© ≤0.14						
44	1,1,2,2-四氯乙烷(mg/L) ^②	② ≤0.04						
45	四氯乙烯(μg/L)	≤0.5	≤4.0	≤40.0	≤300	>300		
46	1, 1, 1-三氯乙烷(μg/L)	≤0.5	≤400	≤2000	≤4000	>4000		
47	1, 1, 2-三氯乙烷(μg/L)	≤0.5	≤0.5	≤5.0	≤60.0	>60.0		
48	三氯乙烯(μg/L)	≤0.5	≤7.0	≤70.0	≤210	>210		

序号	指标	I类	II类	III类	IV类	V类			
49	1, 2, 3-三氯丙烷(mg/L) ^②		,	≤0.0	012				
50	氯乙烯(μg/L)	≤0.5	≤0.5	≤5.0	≤90.0	>90.0			
51	苯(μg/L)	≤0.5	≤1.0	≤10.0	≤120	>120			
52	氯苯(μg/L)	≤0.5	≤60.0	≤300	≤600	>600			
53	1,2-二氯苯(μg/L)	≤0.5	≤200	≤1000	≤2000	>2000			
54	1,4-二氯苯(μg/L)	≤0.5	≤30.0	≤300	≤600	>600			
55	乙苯(μg/L)	≤0.5	≤30.0	≤300	≤600	>600			
56	苯乙烯(μg/L)	≤0.5	≤2.0	≤20.0	≤40.0	>40.0			
57	甲苯(μg/L)	≤0.5	≤140	≤700	≤1400	>1400			
58	二甲苯(总量)(μg/L) [®]	≤0.5 ≤100 ≤500 ≤1000 >1000							
59	硝基苯(mg/L) ^②	≤2.0							
60	苯胺(mg/L) ^②	≤2.2							
61	2-氯酚(mg/L) ^②	≤2.2							
62	苯并[a]蒽(mg/L) ^②			≤0.0	048				
63	苯并[a]芘(μg/L)	≤0.002	≤0.002	≤0.01	≤0.50	>0.50			
64	苯并[b]荧蒽(μg/L)	≤0.1	≤0.4	≤4.0	≤8.0	>8.0			
65	苯并[k]荧蒽(mg/L) ^②			≤0.0	048				
66	萬(mg/L) ^②			≤0.	48				
67	二苯并[a,h]蒽(mg/L) ^②			≤0.00	0048				
68	茚并[1, 2, 3-cd]芘(mg/L) ^②			≤0.0	048				
69	萘(μg/L)	≤1	≤10	≤100	≤600	>600			
70	六氯苯(μg/L)	≤0.01	≤0.10	≤1.00	≤2.00	>2.00			
71	七氯(μg/L)	≤0.01	≤0.04	≤0.40	≤0.80	>0.80			
72	硫丹(mg/L) ^②			≤0.	21	_			
73	氯丹(mg/L) ^②			≤0.	03				
74	石油烃(C10-C40)(mg/L) ^②			≤0	.6				

注:①《地表水环境质量标准》(GB3838-2002)集中式生活饮用水地表水源地特定项目标准限值。

②《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值。

③ $\dot{\gamma}$ (总量) 为 α - $\dot{\gamma}$ - \dot

④滴滴涕(总量)为p,p'-滴滴滴、p,p'-滴滴伊、o,p'-滴滴涕、p,p'-滴滴涕4种异构体加和。

⑤二甲苯(总量)为间二甲苯、对二甲苯、邻二甲苯3种异构体加和。

6.3 分析检测结果

6.3.1 土壤分析检测结果

根据杭州天量检测科技有限公司的检测报告,本次调查土壤样品检测结果表见表 6.3-1。

表 6.3-1 土壤样品检测结果 单位: mg/kg(pH 值无量纲、水分%、干物质%)

测点	样品性状	pH 值	干物质	干物质	铜	铅	镉	汞	砷	六价铬	镍	石油烃	氯乙烯
S1 (0-0.5m)	棕黄色、潮湿	7.81	97.6	79.0	5	17.4	0.05	0.022	4.82	0.6	18	36	< 0.0010
S1 (0.5-2m)	棕黄色、潮湿	7.89	97.9	80.9	8	23.9	0.14	0.022	4.81	0.6	18	25	< 0.0010
S1 (2-4m)	棕黄色、潮湿	7.69	97.6	78.9	11	22.0	0.09	0.029	2.95	0.6	18	24	< 0.0010
S1 (4-6m)	灰色、潮湿	7.58	97.7	80.8	11	20.5	0.08	0.032	3.09	0.5	19	31	< 0.0010
S2 (0-0.5m)	棕黄色、潮湿	8.34	97.6	79.4	9	19.2	0.08	0.028	2.52	0.6	16	20	< 0.0010
S2 (0.5-2m)	棕黄色、潮湿	8.19	97.9	81.7	9	17.4	1.48	0.030	2.67	0.6	20	38	< 0.0010
S2 (2-4m)	棕黄色、潮湿	7.68	97.6	81.6	9	12.8	0.99	0.032	4.21	0.7	19	22	< 0.0010
S2 (4-6m)	灰色、潮湿	7.95	97.9	77.2	11	12.8	1.04	0.031	3.90	<0.5	25	27	< 0.0010
S3 (0-0.5m)	棕黄色、潮湿	7.98	97.3	80.7	16	21.2	0.10	0.038	4.38	<0.5	25	22	< 0.0010
S3 (0.5-2m)	棕黄色、潮湿	8.14	97.5	77.5	7	16.3	0.07	0.029	3.97	0.5	27	24	<0.0010
S3 (2-4m)	棕黄色、潮湿	8.15	98.0	82.2	9	14.8	0.06	0.030	3.29	0.5	24	21	<0.0010

测点	样品性状	pH 值	干物质 (干)	干物质	铜	铅	镉	汞	砷	六价铬	镍	石油烃	氯乙烯
S3 (4-6m)	灰色、潮湿	8.42	97.5	77.6	9	15.4	0.06	0.034	3.41	0.5	17	20	< 0.0010
S3 (6-8m)	灰色、潮湿	7.98	97.5	79.9	9	18.9	0.13	0.034	3.45	0.5	15	20	< 0.0010
S3 (8-10m)	灰色、潮湿	8.36	98.0	82.6	8	18.0	0.12	0.032	3.22	<0.5	19	17	<0.0010
S3 (10-12m)	灰色、潮湿	7.88	98.0	75.9	6	18.0	0.13	0.052	3.61	<0.5	18	17	<0.0010
S3 (12-14m)	灰色、潮湿	7.64	97.3	80.5	12	15.0	0.06	0.053	3.60	0.6	26	22	<0.0010
S3 (14-16m)	灰色、潮湿	7.59	96.8	80.2	7	17.0	0.06	0.050	3.03	0.5	27	21	<0.0010
S3 (16-18m)	灰色、潮湿	7.92	97.9	83.3	12	17.0	0.06	0.058	3.53	<0.5	25	20	< 0.0010
S3 (18-20m)	灰色、潮湿	8.32	97.9	78.5	10	16.5	0.06	0.033	5.01	<0.5	23	20	< 0.0010
S3 (20-22m)	灰色、潮湿	8.41	97.5	82.1	13	18.5	0.13	0.039	3.64	0.6	25	20	<0.0010
S3 (22-24m)	灰色、潮湿	7.46	97.6	79.8	14	19.4	0.15	0.038	3.71	<0.5	26	19	<0.0010
S3 (24-26m)	灰色、潮湿	7.69	97.5	80.6	14	18.5	0.14	0.040	4.32	0.5	25	20	<0.0010
S4 (0-0.5m)	棕黄色、潮湿	8.05	98.0	79.2	12	18.1	0.13	0.038	3.91	<0.5	24	19	<0.0010
S4 (0.5-2m)	棕黄色、潮湿	7.98	97.3	80.7	16	21.2	0.10	0.038	4.38	<0.5	25	22	<0.0010
S4 (2-4m)	灰色、潮湿	8.14	97.5	77.5	7	16.3	0.07	0.029	3.97	0.5	27	24	<0.0010
S4 (4-6m)	灰色、潮湿	8.15	98.0	82.2	9	14.8	0.06	0.030	3.29	0.5	24	21	<0.0010

测点	样品性状	pH 值	干物质 (干)	干物质 (湿)	铜	铅	镉	汞	神	六价铬	镍	石油烃	氯乙烯
S5 (0-0.5m)	棕黄色、潮湿	8.42	97.5	77.6	9	15.4	0.06	0.034	3.41	0.5	17	20	<0.0010
S5 (0.5-2m)	棕黄色、潮湿	7.98	97.5	79.9	9	18.9	0.13	0.034	3.45	0.5	15	20	< 0.0010
S5 (2-4m)	棕黄色、潮湿	8.36	98.0	82.6	8	18.0	0.12	0.032	3.22	<0.5	19	17	< 0.0010
S5 (4-6m)	灰色、潮湿	7.88	98.0	75.9	6	18.0	0.13	0.052	3.61	<0.5	18	17	< 0.0010
S6 (0-0.5m)	棕黄色、潮湿	7.64	97.3	80.5	12	15.0	0.06	0.053	3.60	0.6	26	22	< 0.0010
S6 (0.5-2m)	棕黄色、潮湿	7.59	96.8	80.2	7	17.0	0.06	0.050	3.03	0.5	27	21	< 0.0010
S6 (2-4m)	灰色、潮湿	7.92	97.9	83.3	12	17.0	0.06	0.058	3.53	<0.5	25	20	< 0.0010
S6 (4-6m)	灰色、潮湿	8.32	97.9	78.5	10	16.5	0.06	0.033	5.01	<0.5	23	20	< 0.0010
S7 (0-0.5m)	棕黄色、潮湿	8.41	97.5	82.1	13	18.5	0.13	0.039	3.64	0.6	25	20	< 0.0010
S7 (0.5-2m)	棕黄色、潮湿	7.46	97.6	79.8	14	19.4	0.15	0.038	3.71	<0.5	26	19	< 0.0010
S7 (2-4m)	棕色、潮湿	7.69	97.5	80.6	14	18.5	0.14	0.040	4.32	0.5	25	20	< 0.0010
S7 (4-6m)	灰色、潮湿	8.05	98.0	79.2	12	18.1	0.13	0.038	3.91	<0.5	24	19	<0.0010
相关标准限值	/	/	/	/	2000	400	20	8	20	3.0	150	826	0.12
是否达标	/	/	/	/	是	是	是	是	是	是	是	是	是

续表 6.3-1 土壤样品检测结果 单位: mg/kg

			7.7	U.5-1	:/ T HH / 32.17\;		ing/kg					
测点	1,1-二氯 乙烯	反式-1,2-二 氯乙烯	1,1-二氯乙 烷	顺式-1, 2- 二氯乙烯	氯仿	1,1,1- 三氯乙烷	四氯化碳	苯	1,2-二氯 乙烷	三氯乙烯	1,2-二氯 丙烷	甲苯
S1 (0-0.5m)	<0.0010	< 0.0014	<0.0012	<0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	<0.0011	< 0.0013
S1 (0.5-2m)	<0.0010	< 0.0014	<0.0012	< 0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	< 0.0013	<0.0012	<0.0011	< 0.0013
S1 (2-4m)	<0.0010	<0.0014	<0.0012	< 0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	<0.0011	< 0.0013
S1 (4-6m)	<0.0010	< 0.0014	<0.0012	< 0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	<0.0011	< 0.0013
S2 (0-0.5m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	<0.0011	< 0.0013
S2 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	<0.0012	< 0.0011	< 0.0013
S2 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S2 (4-6m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S3 (0-0.5m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S3 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	<0.0011	< 0.0013
S3 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	<0.0011	< 0.0013
S3 (4-6m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	<0.0011	< 0.0013
S3 (6-8m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S3 (8-10m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	<0.0012	<0.0011	< 0.0013
S3 (10-12m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013

测点	1,1-二氯 乙烯	反式-1,2-二 氯乙烯	1,1-二氯乙 烷	顺式-1,2- 二氯乙烯	氯仿	1, 1, 1- 三氯乙烷	四氯化碳	苯	1,2-二氯 乙烷	三氯乙烯	1,2-二氯 丙烷	甲苯
S3 (12-14m)	<0.0010	< 0.0014	<0.0012	< 0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S3 (14-16m)	<0.0010	< 0.0014	<0.0012	< 0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	< 0.0011	<0.0013
S3 (16-18m)	<0.0010	< 0.0014	<0.0012	<0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	< 0.0011	<0.0013
S3 (18-20m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S3 (20-22m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S3 (22-24m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S3 (24-26m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S4 (0-0.5m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S4 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S4 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S4 (4-6m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S5 (0-0.5m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S5 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	<0.0013
S5 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S5 (4-6m)	<0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	<0.0013	< 0.0019	<0.0013	< 0.0012	< 0.0011	< 0.0013

测点	1,1-二氯 乙烯	反式-1,2-二 氯乙烯	1,1-二氯乙 烷	顺式-1,2- 二氯乙烯	氯仿	1, 1, 1- 三氯乙烷	四氯化碳	苯	1,2-二氯 乙烷	三氯乙烯	1,2-二氯 丙烷	甲苯
S6 (0-0.5m)	<0.0010	< 0.0014	<0.0012	<0.0013	<0.0011	<0.0013	<0.0013	< 0.0019	<0.0013	<0.0012	< 0.0011	<0.0013
S6 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S6 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S6 (4-6m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S7 (0-0.5m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S7 (0.5-2m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S7 (2-4m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
S7 (4-6m)	< 0.0010	< 0.0014	< 0.0012	< 0.0013	<0.0011	< 0.0013	< 0.0013	< 0.0019	< 0.0013	< 0.0012	< 0.0011	< 0.0013
相关标准限值	12	10	3	66	0.3	701	0.9	1	0.52	0.7	1	1200
是否达标	是	是	是	是	是	是	是	是	是	是	是	是

表 6.3-1 土壤样品检测结果 单位: mg/kg

测点	邻-二甲 苯	1, 1, 2- 三氯乙 烷	四氯乙烯	苯震	1,1,1, 2-四氯乙 烷	乙苯	间,对-二甲苯	苯乙烯	1,1,2, 2-四氯乙 烷	1,2,3- 三氯丙烷	1,4-二氯 苯	1,2-二氯 苯	萘
S1 (0-0.5m)	<0.0012	<0.0012	<0.0014	<0.0012	<0.0012	<0.0012	<0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	<0.0004
S1 (0.5-2m)	< 0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	< 0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004

测点	邻-二甲苯	1, 1, 2- 三氯乙 烷	四氯乙烯	苯康	1,1,1, 2-四氯乙 烷	乙苯	间,对- 二甲苯	苯乙烯	1, 1, 2, 2-四氯乙 烷	1, 2, 3- 三氯丙烷	1,4-二氯 苯	1,2-二氯 苯	萘
S1 (2-4m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	<0.0004
S1 (4-6m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S2 (0-0.5m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S2 (0.5-2m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S2 (2-4m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S2 (4-6m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	<0.0015	< 0.0004
S3 (0-0.5m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (0.5-2m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (2-4m)	<0.0012	<0.0012	<0.0014	<0.0012	<0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (4-6m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (6-8m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (8-10m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (10-12m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (12-14m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004

测点	邻-二甲苯	1, 1, 2- 三氯乙 烷	四氯乙烯	苯康	1,1,1, 2-四氯乙 烷	乙苯	间,对- 二甲苯	苯乙烯	1, 1, 2, 2-四氯乙 烷	1, 2, 3- 三氯丙烷	1,4-二氯 苯	1,2-二氯 苯	萘
S3 (14-16m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	<0.0015	< 0.0004
S3 (16-18m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S3 (18-20m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	<0.0004
S3 (20-22m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	<0.0004
S3 (22-24m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	<0.0015	< 0.0004
S3 (24-26m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	<0.0004
S4 (0-0.5m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S4 (0.5-2m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	< 0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S4 (2-4m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	<0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S4 (4-6m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	<0.0004
S5 (0-0.5m)	< 0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	<0.0004
S5 (0.5-2m)	< 0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S5 (2-4m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	< 0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S5 (4-6m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	<0.0012	<0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004

测点	邻-二甲苯	1, 1, 2- 三氯乙 烷	四氯乙烯		1,1,1, 2-四氯乙 烷	乙苯	间,对-二甲苯	苯乙烯	1, 1, 2, 2-四氯乙 烷	1, 2, 3- 三氯丙烷	1,4-二氯 苯	1,2-二氯 苯	萘
S6 (0-0.5m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S6 (0.5-2m)	<0.0012	<0.0012	<0.0014	< 0.0012	<0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	<0.0015	< 0.0004
S6 (2-4m)	<0.0012	< 0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S6 (4-6m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	<0.0012	< 0.0015	< 0.0015	< 0.0004
S7 (0-0.5m)	<0.0012	<0.0012	< 0.0014	< 0.0012	<0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	< 0.0015	< 0.0004
S7 (0.5-2m)	<0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	<0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	<0.0015	< 0.0004
S7 (2-4m)	< 0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	<0.0015	< 0.0004
S7 (4-6m)	< 0.0012	<0.0012	< 0.0014	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0011	<0.0012	< 0.0012	< 0.0015	<0.0015	< 0.0004
相关标准限值	222	0.6	11	68	2.6	7.2	163	1290	1.6	0.05	5.6	560	25
是否达标	是	是	是	是	是	是	是	是	是	是	是	是	是

续表 6.3-1 土壤样品检测结果 单位: mg/kg

测点	六六六	α-六六六	β-六六六	γ-六六六	δ-六六六	滴滴涕	o, p'-DDT	p, p'-DDT	p,p'-DDE	p,p'-DDD	2-氯苯酚	氯甲烷
S1 (0-0.5m)	<0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	< 0.09	< 0.04	< 0.08	< 0.06	<0.0010
S1 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	< 0.04	< 0.08	< 0.06	<0.0010
S1 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	< 0.04	< 0.08	< 0.06	<0.0010

测点	六六六	α-六六六	β-六六六	γ-六六六	δ-六六六	滴滴涕	o, p'-DDT	p, p'-DDT	p,p'-DDE	p,p'-DDD	2-氯苯酚	氯甲烷
S1 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	<0.09	<0.04	<0.08	< 0.06	< 0.0010
S2 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	<0.09	<0.04	< 0.08	< 0.06	< 0.0010
S2 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S2 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	<0.08	<0.09	<0.04	< 0.08	< 0.06	< 0.0010
S2 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	<0.0010
S3 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	< 0.04	< 0.08	< 0.06	< 0.0010
S3 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	<0.0010
S3 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	<0.09	< 0.04	< 0.08	<0.06	< 0.0010
S3 (6-8m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (8-10m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	<0.0010
S3 (10-12m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (12-14m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (14-16m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	< 0.04	< 0.08	< 0.06	< 0.0010
S3 (16-18m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (18-20m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	<0.0010

测点	六六六	α-六六六	β-六六六	γ-六六六	δ-六六六	滴滴涕	o, p'-DDT	p, p'-DDT	p,p'-DDE	p,p'-DDD	2-氯苯酚	氯甲烷
S3 (20-22m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (22-24m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S3 (24-26m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S4 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S4 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S4 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	< 0.08	< 0.08	< 0.09	< 0.04	< 0.08	< 0.06	< 0.0010
S4 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S5 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S5 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S5 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S5 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S6 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S6 (0.5-2m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S6 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	<0.10	< 0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S6 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	< 0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S7 (0-0.5m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	< 0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010

测点	六六六	α-六六六	β-六六六	γ-六六六	δ-六六六	滴滴涕	o, p'-DDT	p, p'-DDT	p,p'-DDE	p,p'-DDD	2-氯苯酚	氯甲烷
S7 (0.5-2m)	< 0.06	<0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	<0.09	<0.04	< 0.08	< 0.06	< 0.0010
S7 (2-4m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
S7 (4-6m)	< 0.06	< 0.07	< 0.06	< 0.06	< 0.10	<0.08	<0.08	< 0.09	<0.04	< 0.08	< 0.06	< 0.0010
相关标准限值	1	0.09	0.32	0.62	/	2.0	/	/	2.0	2.5	250	12
是否达标	/	是	是	是	1	是	/	/	是	是	是	是

续表 6.3-1 土壤样品检测结果 单位: mg/kg

测点	苯并(a)蒽	苯并(b)荧蒽	苯并(k)荧蒽	苯并(a)芘	茚并(1, 2, 3-c, d)芘	二苯并(a,h)蒽	趙	二氯甲烷
S1 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S1 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0015
S1 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S1 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S2 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S2 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S2 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S2 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S3 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0015

测点	苯并(a)蒽	苯并(b)荧蒽	苯并(k)荧蒽	苯并(a)芘	茚并(1, 2, 3-c, d)芘	二苯并(a,h)蒽	崫	二氯甲烷
S3 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.0015
S3 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (6-8m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (8-10m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (10-12m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (12-14m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0015
S3 (14-16m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (16-18m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0015
S3 (18-20m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.0015
S3 (20-22m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (22-24m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S3 (24-26m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.0015
S4 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S4 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S4 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0015

测点	苯并(a)蒽	苯并(b)荧蒽	苯并(k)荧蒽	苯并(a)芘	茚并(1, 2, 3-c, d)芘	二苯并(a,h)蒽	崫	二氯甲烷
S4 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S5 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S5 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S5 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S5 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S6 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.0015
S6 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S6 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S6 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S7 (0-0.5m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S7 (0.5-2m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S7 (2-4m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
S7 (4-6m)	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0015
相关标准限值	5.5	5.5	55	0.55	5.5	0.55	490	94
是否达标	是	是	是	是	是	是	是	是

续表 6.3-1 土壤样品检测结果 单位: mg/kg

测点	六氯苯	α-氯丹	γ-氯丹	α-硫丹	β-硫丹	七氯	苯胺	硝基苯
S1 (0-0.5m)	<0.03	<0.02	< 0.02	< 0.06	<0.09	<0.04	< 0.07	< 0.09
S1 (0.5-2m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	< 0.09
S1 (2-4m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S1 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S2 (0-0.5m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S2 (0.5-2m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S2 (2-4m)	< 0.03	< 0.02	< 0.02	< 0.06	< 0.09	< 0.04	< 0.07	<0.09
S2 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (0-0.5m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (0.5-2m)	< 0.03	< 0.02	< 0.02	< 0.06	< 0.09	< 0.04	< 0.07	<0.09
S3 (2-4m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (6-8m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (8-10m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	< 0.09
S3 (10-12m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09

测点	六氯苯	α-氯丹	γ-氯丹	α-硫丹	β-硫丹	七氯	苯胺	硝基苯
S3 (12-14m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	< 0.09
S3 (14-16m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (16-18m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (18-20m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (20-22m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (22-24m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S3 (24-26m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S4 (0-0.5m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S4 (0.5-2m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S4 (2-4m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S4 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S5 (0-0.5m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S5 (0.5-2m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S5 (2-4m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S5 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S6 (0-0.5m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	<0.04	< 0.07	< 0.09

测点	六氯苯	α-氯丹	γ-氯丹	α-硫丹	β-硫丹	七氯	苯胺	硝基苯
S6 (0.5-2m)	< 0.03	<0.02	<0.02	< 0.06	<0.09	<0.04	< 0.07	<0.09
S6 (2-4m)	< 0.03	<0.02	<0.02	< 0.06	<0.09	<0.04	< 0.07	<0.09
S6 (4-6m)	< 0.03	<0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S7 (0-0.5m)	< 0.03	<0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S7 (0.5-2m)	< 0.03	<0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S7 (2-4m)	< 0.03	<0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
S7 (4-6m)	< 0.03	< 0.02	< 0.02	< 0.06	<0.09	< 0.04	< 0.07	<0.09
相关标准限值	0.33	2.	.0		234	0.13	92	34
是否达标	是	見	Ē		是	是	是	是

6.3.2 地下水环境检测结果

根据杭州天量检测科技有限公司的检测报告,本次调查地下水样品检测结果表见表 6.3-2。

表 6.3-2 地下水样品检测结果

测点	样品性状	浑浊度 NTU	硫酸盐 mg/L	pH 值 无量纲 单次值	色度	臭和味 级	总硬度 mg/L	溶解性总固体 mg/L	耗氧量 mg/L
W1	无色、清	2	31.8	7.13	<5	0,无	278	584	2.86
W2	无色、清	2	72.4	7.32	<5	0,无	341	1.80×10 ³	8.68
W3	无色、清	2	98.0	7.61	<5	0,无	313	776	3.72
W4	无色、清	2	77.6	7.92	<5	0,无	236	486	2.89
相关标准限值	/	≤10	≤350	5.5≤pH≤6.5 8.5≤pH≤9.0	≤25	无	≤650	≤2000	≤10.0
是否达标	/	是	是	是	是	是	是	是	是

续表 6.3-2 地下水样品检测结果

测点	氨氮 mg/L	硝酸盐氮 mg/L	亚硝酸盐氮 mg/L	氟化物 mg/L	氰化物 mg/L	氯化物 mg/L	挥发酚 mg/L	石油类 mg/L	六价铬 mg/L	阴离子表面活性剂 mg/L
W1	0.426	<0.08	< 0.003	0.158	<0.004	17	< 0.0003	< 0.01	< 0.004	<0.05
W2	0.365	<0.08	< 0.003	0.074	<0.004	262	< 0.0003	<0.01	< 0.004	<0.05
W3	0.382	<0.08	< 0.003	0.146	< 0.004	87	< 0.0003	<0.01	< 0.004	<0.05

测点	氨氮 mg/L	硝酸盐氮 mg/L	亚硝酸盐氮 mg/L	氟化物 mg/L	氰化物 mg/L	氯化物 mg/L	挥发酚 mg/L	石油类 mg/L	六价铬 mg/L	阴离子表面活性剂 mg/L
W4	0.188	< 0.08	< 0.003	0.260	< 0.004	23	< 0.0003	< 0.01	< 0.004	<0.05
相关标准限值	≤1.50	≤30.0	≤4.80	≤2.0	≤0.1	≤350	≤0.01	≤0.5	≤0.1	≤0.3
是否达标	是	是	是	是	是	是	是	是	是	是

测点	铜 mg/L	铅 mg/L	锌 mg/L	镉 mg/L	汞 mg/L	砷 mg/L	硒 mg/L	铁 mg/L	锰 mg/L	镍 mg/L	铝 mg/L
W1	<0.04	3.80×10 ⁻³	0.029	1.7×10 ⁻⁴	<4×10 ⁻⁵	0.0056	< 0.0004	1.34	0.38	< 0.007	0.362
W2	<0.04	5.21×10 ⁻³	0.012	<9×10 ⁻⁵	<4×10 ⁻⁵	0.0053	<0.0004	0.32	0.08	< 0.007	0.280
W3	<0.04	<2.4×10 ⁻⁴	0.071	<9×10 ⁻⁵	<4×10 ⁻⁵	0.0054	< 0.0004	0.37	0.17	< 0.007	0.344
W4	<0.04	<2.4×10 ⁻⁴	0.023	2.3×10 ⁻⁴	<4×10 ⁻⁵	0.0032	<0.0004	0.22	0.10	< 0.007	0.289
相关标准限值	≤1.50	≤0.10	≤5.00	≤0.01	≤0.002	≤0.05	≤0.1	≤2.0	≤1.50	≤0.10	≤0.50
是否达标	是	是	是	是	是	是	是	是	是	是	是

测点	菌落总数 个/mL	总大肠菌群 MPN/L	氯乙烯 mg/L	1,1-二氯乙烯 mg/L	二氯甲烷 mg/L	反式-1,2-二氯乙烯 mg/L	1,1-二氯乙烷 mg/L	顺式-1,2-二氯乙烯 mg/L	氯仿 mg/L
W1	80	<20	< 0.0005	< 0.0004	< 0.0005	< 0.0003	< 0.0004	< 0.0004	< 0.0004
W2	87	<20	< 0.0005	< 0.0004	< 0.0005	< 0.0003	< 0.0004	< 0.0004	< 0.0004

测点	菌落总数 个/mL	总大肠菌群 MPN/L	氯乙烯 mg/L	1,1-二氯乙烯 mg/L	二氯甲烷 mg/L	反式-1,2-二氯乙烯 mg/L	1,1-二氯乙烷 mg/L	顺式-1,2-二氯乙烯 mg/L	氯仿 mg/L
W3	84	<20	< 0.0005	<0.0004	0.0172	<0.0003	< 0.0004	< 0.0004	< 0.0004
W4	84	<20	< 0.0005	< 0.0004	< 0.0005	<0.0003	< 0.0004	<0.0004	< 0.0004
相关标准限值	≤1000	≤1000	≤0.09	≤0.06	≤0.5	≤0.06	<0.23	≤0.06	≤0.3
是否达标	是	是	是	是	是	是	是	是	是

测点	1,1,1-三氯乙烷 mg/L	四氯化碳 mg/L	苯 mg/L	1,2-二氯乙烷 mg/L	三氯乙烯 mg/L	1,2-二氯丙烷 mg/L	1,1,2-三氯乙烷 mg/L	四氯乙烯 mg/L	氯苯 mg/L
W1	<0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004	<0.0004	<0.0004	<0.0002	< 0.0002
W2	<0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004	<0.0004	< 0.0004	<0.0002	< 0.0002
W3	<0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0002	< 0.0002
W4	<0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004	<0.0004	< 0.0004	<0.0002	< 0.0002
相关标准限值	≤4	≤0.05	≤0.12	≤0.04	≤0.21	≤0.06	≤0.06	≤0.3	≤0.6
是否达标	是	是	是	是	是	是	是	是	是

测点	苯乙烯 mg/L	1,1,2,2-四氯乙烷 mg/L	1,2,3-三氯丙烷 mg/L	1,4-二氯苯 mg/L	1,2-二氯苯 mg/L	萘 mg/L	麒 mg/L	苯胺 mg/L	甲苯 mg/L
W1	<0.0002	<0.0004	< 0.0002	<0.0004	<0.0004	<0.0004	<0.0025	<0.000057	<0.0003

测点	苯乙烯 mg/L	1,1,2,2-四氯乙烷 mg/L	1,2,3-三氯丙烷 mg/L	1,4-二氯苯 mg/L	1,2-二氯苯 mg/L	萘 mg/L	甝 mg/L	苯胺 mg/L	甲苯 mg/L
W2	< 0.0002	<0.0004	<0.0002	<0.0004	<0.0004	<0.0004	<0.0025	<0.000057	< 0.0003
W3	< 0.0002	<0.0004	< 0.0002	< 0.0004	< 0.0004	< 0.0004	< 0.0025	< 0.000057	< 0.0003
W4	< 0.0002	< 0.0004	< 0.0002	< 0.0004	< 0.0004	< 0.0004	< 0.0025	< 0.000057	< 0.0003
相关标准限值	≤0.04	≤0.04	≤0.0012	≤0.6	≤2	≤0.6	≤0.48	≤2.2	≤1.4
是否达标	是	是	是	是	是	是	是	是	是

测点	六六六 mg/L	甲体六六六 mg/L	乙体六六六 mg/L	丙体六六六 mg/L	丁体六六六 mg/L	硝基苯 mg/L	2-氯苯酚 mg/L	苯并(b)荧蒽 mg/L	总石油烃 mg/L
W1	<2.5×10 ⁻⁵	<0.000056	<3.7×10 ⁻⁵	<2.5×10 ⁻⁵	<6.0×10 ⁻⁵	<0.00004	<0.0001	<0.0048	0.43
W2	<2.5×10 ⁻⁵	< 0.000056	<3.7×10 ⁻⁵	<2.5×10 ⁻⁵	<6.0×10 ⁻⁵	<0.00004	< 0.0001	<0.0048	0.42
W3	<2.5×10 ⁻⁵	< 0.000056	<3.7×10 ⁻⁵	<2.5×10 ⁻⁵	<6.0×10 ⁻⁵	< 0.00004	< 0.0001	< 0.0048	0.53
W4	<2.5×10 ⁻⁵	< 0.000056	<3.7×10 ⁻⁵	<2.5×10 ⁻⁵	<6.0×10 ⁻⁵	<0.00004	< 0.0001	<0.0048	0.46
相关标准限值	≤0.3	/	/	1	/	≤2.0	≤2.2	≤0.008	≤0.6
是否达标	是	/	/	1	/	是	是	是	是

测点	1,1,1,2-四氯乙烷 mg/L	滴滴涕 mg/L	o, p'-DDT mg/L	p, p'-DDT mg/L	p,p'-DDD mg/L	p,p'-DDE mg/L	七氯 mg/L	硫丹 1 mg/L	硫丹 2 mg/L
W1	<0.0003	<3.1×10 ⁻⁵	<3.1×10 ⁻⁵	<4.3×10 ⁻⁵	<4.8×10 ⁻⁵	<3.6×10 ⁻⁵	<4.2×10 ⁻⁵	<3.2×10 ⁻⁵	<4.4×10 ⁻⁵
W2	< 0.0003	<3.1×10 ⁻⁵	<3.1×10 ⁻⁵	<4.3×10 ⁻⁵	<4.8×10 ⁻⁵	<3.6×10 ⁻⁵	<4.2×10 ⁻⁵	<3.2×10 ⁻⁵	<4.4×10 ⁻⁵
W3	< 0.0003	<3.1×10 ⁻⁵	<3.1×10 ⁻⁵	<4.3×10 ⁻⁵	<4.8×10 ⁻⁵	<3.6×10 ⁻⁵	<4.2×10 ⁻⁵	<3.2×10 ⁻⁵	<4.4×10 ⁻⁵
W4	< 0.0003	<3.1×10 ⁻⁵	<3.1×10 ⁻⁵	<4.3×10 ⁻⁵	<4.8×10 ⁻⁵	<3.6×10 ⁻⁵	<4.2×10 ⁻⁵	<3.2×10 ⁻⁵	<4.4×10 ⁻⁵
相关标准限值	≤0.14	≤0.002	/	/	/	/	≤0.0008	<u> </u>	(0.21
是否达标	是	是	/	/	/	/	是		是

测点	邻二甲苯 mg/L	间,对-二甲苯 mg/L	乙苯 mg/L	六氯苯 mg/L	α-氯丹 mg/L	γ-氯丹 mg/L	苯并(k)荧蒽 mg/L	茚并(1, 2, 3-c, d)芘 mg/L
W1	< 0.0002	< 0.0005	<0.0003	<4.3×10 ⁻⁵	<5.5×10 ⁻⁵	<4.4×10 ⁻⁵	< 0.0025	<0.0025
W2	< 0.0002	< 0.0005	<0.0003	<4.3×10 ⁻⁵	<5.5×10 ⁻⁵	<4.4×10 ⁻⁵	< 0.0025	<0.0025
W3	< 0.0002	< 0.0005	< 0.0003	<4.3×10 ⁻⁵	<5.5×10 ⁻⁵	<4.4×10 ⁻⁵	< 0.0025	<0.0025
W4	< 0.0002	< 0.0005	< 0.0003	<4.3×10 ⁻⁵	<5.5×10 ⁻⁵	<4.4×10 ⁻⁵	< 0.0025	<0.0025
相关标准限值	≤1	.0	≤0.6	≤0.002	≤0.	.03	≤0.048	≤0.0048
是否达标	見	<u> </u>	是	是	見		是	是

根据浙江格临检测股份有限公司出具的检测报告,本次调查地下水样品检测结果表见表 6.3-3。

测点	样品性状	二苯并(a,h)蒽 μg/L	苯并(a)芘 μg/L	苯并(a)蒽 μg/L
W1	微黄微浑	<0.003	<0.004	<0.012
W2	微黄微浑	<0.003	< 0.004	<0.012
W3	微黄微浑	<0.003	<0.004	<0.012
W4	微黄微浑	< 0.003	< 0.004	<0.012
相关标准限值	/	≤0.48	≤0.5	4.8
是否达标	/	是	是	是

6.4 质控结果分析

本场地相关实验室分析的质控数量及质控结果详见表 6.4-1。

项目 土壤 合格率是否满足要求 水样 1个 1个 全程空白 运输空白 1个 1个 是 设备空白 1个 0个 是 实验室空白 1个 1个 是 现场平行样 1个 4个 是 室内样品平行样 1个 5个 是 是 内部密码平行样 1个 4 个 实验室空白加标 (标线验证) 30 个 7个 是

表 6.4-1 实验室质控结果汇总评估

VOCs 的质控结果汇总如下

实验室质控样

项目	实际结果	质控要求
全程空白、运输空白、室内 空白、设备空白	小于检出限	小于检出限
平行样相对偏差	1.08~3.03%	≤25%
实验室质控样及空白加标回 收率	79.9~102%	70~130%

10 个

7个

是

SVOC 的质控结果汇总如下

项目	实际结果	质控要求
全程空白、运输空白、室内 空白、设备空白	小于检出限	小于检出限
平行样相对偏差	0	≤40%
实验室质控样及空白加标回 收率	72.3~96.5%	50~120%

重金属和无机物的质控结果汇总如下

项目	实际结果	质控要求
全程空白、运输空白、室内 空白、设备空白	小于检出限	小于检出限
平行样相对偏差	0~9.09%	≤10~35%
实验室质控样及空白加标回 收率	90.4~102%	70~130%

从上表可见,所有现场质控样品的检测数据偏差均在控制范围以内满足《浙 江省环境监测质量保证技术规定(第三版试行)》 样品质量控制要求,质控合 理,结果可信。

具体实验室质控数据统计结果详见附件 8.5 质控报告。由表可见:

- (1) 空白:要求方法空白的检测值小于检出限。土壤与地下水所有方法空白的检出限均小于检出限。
- (2) 平行样品:实验室内部平行样品结果的相对偏差(RPD)均满足控制要求。
- (3)实验室控制样品:要求控制样检测结果落在标准值范围内或回收率 VOCs 控制在 70-130%, SVOCs 控制在 50~120%, 重金属及无机物控制在 70%~130%。土壤与地下水的实验室控制样品所有检测结果均落在标值范围内。

实验室分析质量控制结果表明,空白样品的测定结果均低于报检出限,平行样内相对偏差均符合控制范围,加标回收样的回收率均符合控制范围,实验室质控样:金属质控样的检测结果均在有证标准物质证书控制范围,有机质控样的检果均在各化合物回收率控制范围内。本报告质控数据结果满意,符合相关要求。

6.5 结果分析和评价

6.5.1 土壤检测结果分析和评价

土壤各分析项目浓度范围、检出率和超标率汇总见表 6.5-1, 各检测点位检测因子最大值分布汇总表见表 6.5-2。

	农 0.5-1 工 集件 III 力 们 纪末 (
序号	检测指标	评价标准 (mg/kg)	背景点S7 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)	场地内S1~S6 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)					
1	pH值	/	7.46~8.41	/	/	7.58~8.42	/	/					
一、	重金属												
1	铜	2000	12~14	100	0	4~16	100	0					
2	铅	400	18.1~19.4	100	0	12.8~23.9	100	0					
3	镉	20	0.13~0.15	100	0	0.05~1.48	100	0					
4	汞	8	0.038~0.04	100	0	0.018~0.058	100	0					
5	砷	20	3.64~4.32	100	0	2.52~5.01	100	0					
6	六价铬	3.0	ND~0.6	50	0	ND~0.7	67.6	0					
7	镍	150	24~26	100	0	15~27	100	0					
二、	挥发性有机物												
8	氯乙烯	0.12	ND	0	0	ND	0	0					
9	1,1-二氯乙 烯	12	ND	0	0	ND	0	0					
10	反式-1,2-二 氯乙烯	10	ND	0	0	ND	0	0					
11	1,1-二氯乙	3	ND	0	0	ND	0	0					

表 6.5-1 土壤样品分析结果(浓度范围、检出率、超标率)汇总表

序号	检测指标	评价标准 (mg/kg)	背景点S7 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)	场地内S1~S6 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)
	烷							
12	顺式-1,2-二 氯乙烯	66	ND	0	0	ND	0	0
13	氯仿	0.3	ND	0	0	ND	0	0
14	1,1,1-三氯 乙烷	701	ND	0	0	ND	0	0
15	四氯化碳	0.9	ND	0	0	ND	0	0
16	苯	1	ND	0	0	ND	0	0
17	1,2-二氯乙 烷	0.52	ND	0	0	ND	0	0
18	三氯乙烯	0.7	ND	0	0	ND	0	0
19	1,2-二氯丙 烷	1	ND	0	0	ND	0	0
20	甲苯	1200	ND	0	0	ND	0	0
21	1,1,2-三氯 乙烷	0.6	ND	0	0	ND	0	0
22	四氯乙烯	11	ND	0	0	ND	0	0
23	氯苯	68	ND	0	0	ND	0	0
24	1,1,1,2- 四氯乙烷	2.6	ND	0	0	ND	0	0
25	乙苯	7.2	ND	0	0	ND	0	0
26	间,对-二甲 苯	163	ND	0	0	ND	0	0
27	邻-二甲苯	222	ND	0	0	ND	0	0
28	苯乙烯	1290	ND	0	0	ND	0	0
29	1,1,2,2- 四氯乙烷	1.6	ND	0	0	ND	0	0
30	1,2,3-三氯 丙烷	0.05	ND	0	0	ND	0	0
31	1,4-二氯苯	5.6	ND	0	0	ND	0	0
32	1,2-二氯苯	560	ND	0	0	ND	0	0
33	氯甲烷	12	ND	0	0	ND	0	0
34	二氯甲烷	94	ND	0	0	ND	0	0
三、	半挥发性有机物	J .		ı			ı	Γ
35	硝基苯	34	ND	0	0	ND	0	0
36	苯胺	92	ND	0	0	ND	0	0
37	2-氯苯酚	250	ND	0	0	ND	0	0
38	苯并(a)蒽	5.5	ND	0	0	ND	0	0

序号	检测指标	评价标准 (mg/kg)	背景点S7 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)	场地内S1~S6 浓度范围 (mg/kg)	检出率 (%)	超标率 (%)
39	苯并(b)荧蒽	5.5	ND	0	0	ND	0	0
40	苯并(k)荧蒽	55	ND	0	0	ND	0	0
41	苯并(a)芘	0.55	ND	0	0	ND	0	0
42	崫	490	ND	0	0	ND	0	0
43	二苯并(a,h) 蒽	0.55	ND	0	0	ND	0	0
44	茚并(1, 2, 3-c, d)芘	5.5	ND	0	0	ND	0	0
45	萘	25	ND	0	0	ND	0	0
四、	其它							
46	氯丹	2.0	ND	0	0	ND	0	0
47	p,p'-DDE	2.0	ND	0	0	ND	0	0
48	p,p'-DDD	2.5	ND	0	0	ND	0	0
49	滴滴涕	2.0	ND	0	0	ND	0	0
50	硫丹	234	ND	0	0	ND	0	0
51	七氯	0.13	ND	0	0	ND	0	0
52	α六六六	0.09	ND	0	0	ND	0	0
53	β六六六	0.32	ND	0	0	ND	0	0
54	γ六六六	0.62	ND	0	0	ND	0	0
55	六氯苯	0.33	ND	0	0	ND	0	0
56	石油烃 (C10-C40)	826	19~20	100	0	14~294	100	0

表 6.5-2 土壤样品分析结果(各点位检测因子最大值分布)汇总表 单位: mg/kg, pH 除外

	S	1	S	2	S3	3	S	4	S	5		
检测因子	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	最大检测结果断面	检测值	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	第一类用地筛选值	超标点位
pH值	2-4m	8.34	0-0.5m	8.33	8-10m	8.36	4-6m	8.15	0-0.5m	8.42	/	无
铜	2-4m	8	0.5-2m \ 4-6m	9	0.5-2m 16-20m	11	0.5-2m	16	0-2m	9	2000	无
铅	0.5-2m	19.7	0.5-2m \ 4-6m	16.9	0.5-2m、 14-16m	23.9	0.5-2m	21.2	0.5-2m	18.9	400	无
镉	0-0.5m	0.26	0-0.5m \ 4-6m	0.06	0-0.5m	0.29	0-0.5m	1.04	0.5-2m \ 4-6m	0.13	20	无
汞	0.5-2m	0.022	4-6m	0.032	0-0.2m\ 18-20m\ 24-26m	0.032	0.5-2m	0.038	4-6m	0.052	8	无
砷	0.5-2m	4.12	4-6m	4.39	10-12m	4.89	0.5-2m	4.38	4-6m	3.61	20	无
六价铬	4-6m	0.6	2-4m	0.5	24-26m	0.7	2-6m	0.5	0-2m	0.5	3.0	无
镍	0.5-2m	20	0-0.5m	22	4-6m	21	2-4m	27	2-4m	19	150	无
氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	0.12	无
1,1-二氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	12	无
反式-1,2-二氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	10	无
1,1-二氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	3	无
顺式-1,2-二氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	66	无
氯仿	/	ND	/	ND	/	ND	/	ND	/	ND	0.3	无
1,1,1-三氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	701	无

	S	1	S	2	S3	3	S	4	S	5		
检测因子	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	最大检测结果断面	检测值	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	第一类用地筛选值	超标点位
四氯化碳	/	ND	/	ND	/	ND	/	ND	/	ND	0.9	无
苯	/	ND	/	ND	/	ND	/	ND	/	ND	1	无
1,2-二氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	0.52	无
三氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	0.7	无
1,2-二氯丙烷	/	ND	/	ND	/	ND	/	ND	/	ND	1	无
甲苯	/	ND	/	ND	/	ND	/	ND	/	ND	1200	无
1,1,2-三氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	0.6	无
四氯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	11	无
氯苯	/	ND	/	ND	/	ND	/	ND	/	ND	68	无
1, 1, 1, 2-四氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	2.6	无
乙苯	/	ND	/	ND	/	ND	/	ND	/	ND	7.2	无
间,对-二甲苯	/	ND	/	ND	/	ND	/	ND	/	ND	163	无
邻-二甲苯	/	ND	/	ND	/	ND	/	ND	/	ND	222	无
苯乙烯	/	ND	/	ND	/	ND	/	ND	/	ND	1290	无
1, 1, 2, 2-四氯乙烷	/	ND	/	ND	/	ND	/	ND	/	ND	1.6	无
1, 2, 3-三氯丙烷	/	ND	/	ND	/	ND	/	ND	/	ND	0.05	无
1,4-二氯苯	/	ND	/	ND	/	ND	/	ND	/	ND	5.6	无
1,2-二氯苯	/	ND	/	ND	/	ND	/	ND	/	ND	560	无
氯甲烷	/	ND	/	ND	/	ND	/	ND	/	ND	12	无
二氯甲烷	/	ND	/	ND	/	ND	/	ND	/	ND	94	无

	S	1	S	2	S3	3	S	4	S	5		
检测因子	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	最大检测结果断面	检测值	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	第一类用地筛选值	超标点位
硝基苯	/	ND	/	ND	/	ND	/	ND	/	ND	34	无
苯胺	/	ND	/	ND	/	ND	/	ND	/	ND	92	无
2-氯苯酚	/	ND	/	ND	/	ND	/	ND	/	ND	250	无
苯并(a)蒽	/	ND	/	ND	/	ND	/	ND	/	ND	5.5	无
苯并(b)荧蒽	/	ND	/	ND	/	ND	/	ND	/	ND	5.5	无
苯并(k)荧蒽	/	ND	/	ND	/	ND	/	ND	/	ND	55	无
苯并(a)芘	/	ND	/	ND	/	ND	/	ND	/	ND	0.55	无
薜	/	ND	/	ND	/	ND	/	ND	/	ND	490	无
二苯并(a, h)蒽	/	ND	/	ND	/	ND	/	ND	/	ND	0.55	无
茚并(1, 2, 3-c, d)芘	/	ND	/	ND	/	ND	/	ND	/	ND	5.5	无
萘	/	ND	/	ND	/	ND	/	ND	/	ND	25	无
石油烃	4-6m	19	0-0.5m	20	10-12m	294	0-0.5m	27	0-2m	20	826	无
α六六六	/	ND	/	ND	/	ND	/	ND	/	ND	0.09	无
β六六六	/	ND	/	ND	/	ND	/	ND	/	ND	0.32	无
γ六六六	/	ND	/	ND	/	ND	/	ND	/	ND	0.62	无
滴滴涕	/	ND	/	ND	/	ND	/	ND	/	ND	2.0	无
氯丹	/	ND	/	ND	/	ND	/	ND	/	ND	2.0	无
p,p'-DDE	/	ND	/	ND	/	ND	/	ND	/	ND	2.0	无
p,p'-DDD	/	ND	/	ND	/	ND	/	ND	/	ND	2.0	无
硫丹	/	ND	/	ND	/	ND	/	ND	/	ND	2.5	无

	S	1	S	2	S	3	S	4	S	5		
检测因子	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	最大检测结果断面	检测值	最大检 测结果 断面	检测值	最大检 测结果 断面	检测值	第一类用 地筛选值	超标点位
七氯	/	ND	/	ND	/	ND	/	ND	/	ND	234	无
六氯苯	/	ND	/	ND	/	ND	/	ND	/	ND	0.13	无

续表 6.5-2 土壤样品分析结果(各点位检测因子最大值分布)汇总表

- 	S6		S7		第一类用	拉卡卡
检测因子	最大检测结果断面	检测值	最大检测结果断面	检测值	地筛选值	超标点位
pH值	4-6m	8.32	0-0.5m	8.41	/	无
铜	0-0.5m、2-4m	12	0.5-2m、2-4m	14	2000	无
铅	0.5-4m	17	0.5-2m	19.4	400	无
镉	0-6m	0.06	0.5-2m	0.15	20	无
汞	2-4m	0.058	2-4m	0.04	8	无
砷	4-6m	5.01	2-4m	4.32	20	无
六价铬	0-0.5m	0.6	0-0.5m	0.6	3.0	无
镍	0.5-2m	27	0.5-2m	26	150	无
氯乙烯	/	ND	/	ND	0.12	无
1,1-二氯乙烯	/	ND	/	ND	12	无
反式-1,2-二氯乙烯	/	ND	/	ND	10	无
1,1-二氯乙烷	/	ND	/	ND	3	无
顺式-1,2-二氯乙烯	/	ND	/	ND	66	无
氯仿	/	ND	/	ND	0.3	无
1, 1, 1-三氯乙烷	/	ND	/	ND	701	无

사제되フ	S6		S7		第一类用	+71+= . F. (-)-
检测因子	最大检测结果断面	检测值	最大检测结果断面	检测值	地筛选值	超标点位
四氯化碳	/	ND	/	ND	0.9	无
苯	/	ND	/	ND	1	无
1,2-二氯乙烷	/	ND	/	ND	0.52	无
三氯乙烯	/	ND	/	ND	0.7	无
1,2-二氯丙烷	/	ND	/	ND	1	无
甲苯	/	ND	/	ND	1200	无
1,1,2-三氯乙烷	/	ND	/	ND	0.6	无
四氯乙烯	/	ND	/	ND	11	无
氯苯	/	ND	/	ND	68	无
1, 1, 1, 2-四氯乙烷	/	ND	/	ND	2.6	无
乙苯	/	ND	/	ND	7.2	无
间,对-二甲苯	/	ND	/	ND	163	无
邻-二甲苯	/	ND	/	ND	222	无
苯乙烯	/	ND	/	ND	1290	无
1, 1, 2, 2-四氯乙烷	/	ND	/	ND	1.6	无
1, 2, 3-三氯丙烷	/	ND	/	ND	0.05	无
1,4-二氯苯	/	ND	/	ND	5.6	无
1,2-二氯苯	/	ND	/	ND	560	无
氯甲烷	/	ND	/	ND	12	无
二氯甲烷	/	ND	/	ND	94	无
硝基苯	/	ND	/	ND	34	无

- 人が にロップ	S6		S7		第一类用	+714== . H: A>
检测因子	最大检测结果断面	检测值	最大检测结果断面	检测值	地筛选值	超标点位
苯胺	/	ND	/	ND	92	无
2-氯苯酚	/	ND	/	ND	250	无
苯并(a)蒽	/	ND	/	ND	5.5	无
苯并(b)荧蒽	/	ND	/	ND	5.5	无
苯并(k)荧蒽	/	ND	/	ND	55	无
苯并(a)芘	/	ND	/	ND	0.55	无
崫	/	ND	/	ND	490	无
二苯并(a, h)蒽	/	ND	/	ND	0.55	无
茚并(1, 2, 3-c, d)芘	/	ND	/	ND	5.5	无
萘	/	ND	/	ND	25	无
石油烃	0-0.5m	22	0-0.5m、2-4m	20	826	无
α六六六	/	ND	/	ND	0.09	无
β六六六	/	ND	/	ND	0.32	无
γ六六六	/	ND	/	ND	0.62	无
滴滴涕	/	ND	/	ND	2.0	无
氯丹	/	ND	/	ND	2.0	无
p,p'-DDE	/	ND	/	ND	2.0	无
p,p'-DDD	/	ND	/	ND	2.5	无
硫丹	/	ND	/	ND	234	无
七氯	/	ND	/	ND	0.13	无
六氯苯	/	ND	/	ND	0.33	无

根据表 6.5-1 和表 6.5-2 的统计数据可知,本次初步调查共送检 38 个土壤样品,其中地块内样品 34 个,地块外对照点样品 4 个。

(1) 土壤 pH 检测分析结果

本次送检的 38 个土壤样品均检测了 pH。检测结果表明,对照点 S7 的 pH 处于 7.46~8.41 之间, 地块内样品土壤 pH 处于 7.58~8.42 之间, 总体与对照点的 酸碱度保持一致。

(2) 土壤重金属检测分析结果

本次送检的 38 个土壤样品均检测了 7 种重金属指标。检测结果表明,重金属指标在所有受检土壤样品中均有检出,其中六价铬部分检出,检出率为 65.8%,其余重金属指标全部检出,但检出的重金属含量均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)第一类用地筛选值。

(3) 土壤有机污染物检测结果分析

本次送检的 38 个土壤样品均检测了 27 项挥发性有机物、11 项半挥发性有机物、氯丹、p,p'-滴滴滴、p,p'-滴滴伊、滴滴涕、硫丹、七氯、六六六、六氯苯和石油烃。检测结果表明,所有受检样品中 27 项挥发性有机物、11 项半挥发性有机物、氯丹、p,p'-滴滴滴、p,p'-滴滴伊、滴滴涕、硫丹、七氯、六六六和六氯苯均未检出,石油烃均有检出,所有指标含量均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)第一类用地筛选值。

6.5.2 地下水检测结果分析和评价

地下水各分析项目浓度范围、检出率和超标率汇总见表 6.5-3。

序号	检测指标	评价标准	背景点W4 浓度范围	检出率 (%)	超标率 (%)	场地内 W1~W3浓度 范围	检出率 (%)	超标率 (%)
1	pH 值	5.5\left pH\left 6.5 8.5\left pH\left 9.0	7.92	100	0	7.13~7.61	100	0
2	色(铂钴色 度单位)	≤25	ND	0	0	ND	0	0
3	臭和味	无	无	/	0	无	/	0
4	总硬度(以 CaCO ₃) (mg/L)	≤650	236	100	0	278~341	100	0
5	溶解性总固 体(mg/L)	≤2000	486	100	0	584~1800	100	0

表 6.5-3 地下水样品分析结果(浓度范围、检出率、超标率)汇总表

序号	检测指标	评价标准	背景点W4 浓度范围	检出率 (%)	超标率 (%)	场地内 W1~W3浓度 范围	检出率 (%)	超标率 (%)
6	耗氧量 (COD _{Mn} 法,以O ₂ 计) (mg/L)	≤10	2.89	100	0	2.86~8.68	100	0
7	- 氨氮 (以 N 计) (mg/L)	≤1.5	0.188	100	0	0.365~0.426	100	0
8	硝酸盐(以 N计) (mg/L)	≤30	ND	0	0	ND	0	0
9	亚硝酸盐 (以N计) (mg/L)	≤4.8	ND	0	0	ND	0	0
10	氟化物 (mg/L)	≤2.0	0.26	100	0	0.074~0.158	100	0
11	氰化物 (mg/L)	≤0.1	ND	0	0	ND	0	0
12	硫酸盐 (mg/L)	≤350	77.6	100	0	31.8~98	100	0
13	浑浊度 /NTU	≤10	2	100	0	2	100	0
14	氯化物 (mg/L)	≤350	23	100	0	17~262	100	0
15	挥发性酚类 (以苯酚 计)(mg/L)	≤0.01	ND	0	0	ND	0	0
16	石油类 (mg/L)	≤0.5	ND	0	0	ND	0	0
17	阴离子表面 活性剂 (mg/L)	≤0.3	ND	0	0	ND	0	0
18	铜 (mg/L)	≤1.50	ND	0	0	ND	0	0
19	铅 (mg/L)	≤0.10	ND	0	0	ND~5.21×10 ⁻³	66.7	0
20	锌 (mg/L)	≤5.00	0.023	100	0	0.012~0.071	100	0
21	镉(mg/L)	≤0.01	2.3×10 ⁻⁴	100	0	ND~1.7×10 ⁻⁴	33.3	0
22	汞 (mg/L)	≤0.002	ND	0	0	ND	0	0
23	砷 (mg/L)	≤0.05	0.0032	100	0	0.0053~0.0056	66.7	0
24	铬 (六价) (mg/L)	≤0.10	ND	0	0	ND	0	0
25	硒 (mg/L)	≤0.1	ND	0	0	ND	0	0
26	铁 (mg/L)	≤2.0	0.22	100	0	0.32~1.34	100	0

序号	检测指标	评价标准	背景点W4 浓度范围	检出率 (%)	超标率 (%)	场地内 W1~W3浓度 范围	检出率 (%)	超标率 (%)
27	锰 (mg/L)	≤1.50	0.1	100	0	0.08~0.38	66.7	0
28	镍 (mg/L)	≤0.10	ND	0	0	ND	0	0
29	铝 (mg/L)	≤0.50	0.289	100	0	0.28~0.362	100	0
30	菌落总数 (CFU/mL)	≤1000	84	100	0	80~87	100	0
31	总大肠菌群 (MPN/100 mL 或 CFU/100mL)	≤100	ND	0	0	ND	0	0
32	六六六 (总 量) (μg/L)	≤300	ND	0	0	ND	0	0
33	滴滴涕(总 量)(μg/L)	≤2.00	ND	0	0	ND	0	0
34	四氯化碳 (μg/L)	≤50.0	ND	0	0	ND	0	0
35	氯仿(μg/L)	≤300	ND	0	0	ND	0	0
36	1,1-二氯乙 烷(mg/L)	≤0.23	ND	0	0	ND	0	0
37	1,2-二氯乙 烷(μg/L)	≤40.0	ND	0	0	ND	0	0
38	1,1-二氯乙 烯(μg/L)	≤60.0	ND	0	0	ND	0	0
39	顺-1,2-二氯 乙烯 (μg/L)	≤60.0	ND	0	0	ND	0	0
40	反-1,2-二氯 乙烯 (μg/L)	≤60.0	ND	0	0	ND	0	0
41	二氯甲烷 (μg/L)	≤500	ND	0	0	ND~17.2	33.3	0
42	1,2-二氯丙 烷(μg/L)	≤60.0	ND	0	0	ND	0	0
43	1,1,1,2-四氯 乙烷(mg/L)	≤0.14	ND	0	0	ND	0	0
44	1,1,2,2-四氯 乙烷(mg/L)	≤0.04	ND	0	0	ND	0	0
45	四氯乙烯 (μg/L)	≤300	ND	0	0	ND	0	0
46	1,1,1-三氯 乙烷 (μg/L)	≤4000	ND	0	0	ND	0	0
47	1,1,2-三氯 乙烷 (μg/L)	≤60.0	ND	0	0	ND	0	0
48	三氯乙烯 (μg/L)	≤210	ND	0	0	ND	0	0
49	1,2,3-三氯	≤0.0012	ND	0	0	ND	0	0

序号	检测指标	评价标准	背景点W4 浓度范围	检出率 (%)	超标率 (%)	场地内 W1~W3浓度 范围	检出率 (%)	超标率 (%)
	丙烷(mg/L)							
50	氯乙烯 (μg/L)	≤90.0	ND	0	0	ND	0	0
51	苯(μg/L)	≤120	ND	0	0	ND	0	0
52	氯苯 (μg/L)	≤600	ND	0	0	ND	0	0
53	1,2-二氯苯 (μg/L)	≤2000	ND	0	0	ND	0	0
54	1,4-二氯苯 (μg/L)	≤600	ND	0	0	ND	0	0
55	乙苯 (μg/L)	≤600	ND	0	0	ND	0	0
56	苯乙烯 (µg/L)	≤40.0	ND	0	0	ND	0	0
57	甲苯 (μg/L)	≤1400	ND	0	0	ND	0	0
58	二甲苯(总 量)(μg/L)	≤1000	ND	0	0	ND	0	0
59	硝基苯 (mg/L)	≤2.0	ND	0	0	ND	0	0
60	苯胺(mg/L)	≤2.2	ND	0	0	ND	0	0
61	2-氯酚 (mg/L)	≤2.2	ND	0	0	ND	0	0
62	苯并[a]蒽 (mg/L)	≤0.0048	ND	0	0	ND	0	0
63	苯并[a]芘 (μg/L)	≤0.50	ND	0	0	ND	0	0
64	苯并[b]荧蒽 (μg/L)	≤8.0	ND	0	0	ND	0	0
65	苯并[k]荧蒽 (mg/L)	≤0.048	ND	0	0	ND	0	0
66	蔗 (mg/L)	≤0.48	ND	0	0	ND	0	0
67	二苯并[a,h] 蒽(mg/L)	≤0.00048	ND	0	0	ND	0	0
68	茚并 [1,2,3-cd]芘	≤0.0048	ND	0	0	ND	0	0
69	萘(μg/L)	≤600	ND	0	0	ND	0	0
70	总石油烃 (C10-C40) (mg/L)	≤0.6	0.46	100	0	0.42~0.53	100	0
71	六氯苯 (μg/L)	≤2.00	ND	0	0	ND	0	0
72	七氯(μg/L)	≤0.80	ND	0	0	ND	0	0
73	硫丹(mg/L)	≤0.21	ND	0	0	ND	0	0

序号	检测指标	评价标准	背景点W4 浓度范围	检出率 (%)	超标率 (%)	场地内 W1~W3浓度 范围	检出率 (%)	超标率 (%)
74	氯丹(mg/L)	≤0.03	ND	0	0	ND	0	0

由表 6.5-3 的统计数据可知,本次初步调查共送检地下水样品 4 个,其中地块内样品 3 个,对照点样品 1 个,所有样品均进行了 74 项地下水指标检测分析。

检测结果表明,受检样品中,对照点 W4 的 pH 值为 7.92,地块内点位的 pH 值为 7.13~7.61,与对照点差异不大。所有地下水样品中浑浊度、硫酸盐、总硬度、溶解性总固体、耗氧量、氨氮、氟化物、氯化物、铅、锌、镉、砷、铁、锰、铝、菌落总数、二氯甲烷及总石油烃均有检出,其余指标均未检出,地下水各项指标均满足《地下水质量标准》(GB/T14848-2017)IV类水质标准限值要求,其中石油类能满足《地表水环境质量标准》(GB3838-2002)IV类水标准限值要求。《地下水质量标准》(GB/T14848-2017)中未涉及指标,均能满足《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值要求。

通过地块内与地块外对照点检测数据对比可知,场地内地下水样品各类指标检测值与对照点无明显差异。

7 结论和建议

7.1 结论

(1) 土壤环境调查结论

本次土壤环境调查场地内布置 6 个点位,场地外 1 个对照地点,根据检测结果,调查地块所监测的土壤样品中 7 种重金属指标及石油烃均被检出,其中六价铬部分检出,但均未超过第一类用地的筛选值; 27 项挥发性有机物、11 项半挥发性有机物、氯丹、p,p'-滴滴滴、p,p'-滴滴伊、滴滴涕、硫丹、七氯、六六六和六氯苯均未被检出。因此,总体上看,地块内土壤环境未受到明显污染。

(2) 地下水环境调查结论

本次地下水环境调查场地内布置 3 个点位,场地外 1 个对照地点,根据检测结果,地下水各项指标均满足《地下水质量标准》(GB/T14848-2017)IV类水质标准限值要求,其中石油类能满足《地表水环境质量标准》(GB3838-2002)IV类水标准限值要求。《地下水质量标准》(GB/T14848-2017)中未涉及指标,均能满足《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值要求。场地范围内地下水不开发、不利用,对人体的健康风险可接受。

(3) 总体结论

本地块场地环境调查严格按照国家技术规范和相关导则开展。根据地块环境调查结果,地块内土壤质量满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第一类用地的筛选值要求;地块地下水质量满足《地下水质量标准》(GB/T14848-2017)IV类标准、《地表水环境质量标准》(GB3838-2002)IV类标准要求及《上海市建设用地地下水污染风险管控筛选值补充指标》中第一类用地筛选值要求。

因此,可以认为调查地块无需进行下一阶段场地环境详细调查和风险评估工作,可作为规划的居住用地进行开发利用。

7.2 建议

- (1)项目后续开展土地开发利用过程中应按照相关文件要求做好环境保护工作。
 - (2)土地开发过程中应做好环境突发状况应对措施和环境应急预案的制定。
 - (3) 由于土壤及地下水污染具有隐蔽性,任何调查都无法详细到能够排除

所有风险,故在场地开发施工之前,施工单位应组织编制相关应急预案,在施工过程中若发现土壤及地下水异常,应立即启动应急预案,停止施工、疏散人员、隔离异常区、设置警示标志,并立即报告主管部门,同时请专业环境检测人员进行应急检测,并根据最终检测结果制定后续工作程序。并且按照相关规定和要求做好土方外运监管工作,防止有异常土壤外运情况。

7.3 不确定性分析

造成调查结果不确定性的主要来源包括污染识别、地层构成和水文地质调查、布点及采样、样品保存和运输、分析测试及数据评估等。开展调查结果不确定性影响因素分析,对污染场地的管理,降低场地污染物所带来的健康风险具有重要意义。

从本次环境初步调查的过程来看,本项目的不确定性来源主要是由于土壤污染、地下水污染均容易迁移,小尺度范围及大尺度范围内污染物分布均存在差异,不同污染物在不同地层或土壤中分布的规律差异性较大,这些因素在一定程度上易造成检出结果出现偏差。

综上所述,虽然本次调查存在一定限制条件和不确定性,但总体分析来看, 这些限制因素和不确定因素对调查结论影响是可控的,不影响调查的总体结论。